6,246 research outputs found

    Ion temperature anisotropy across a magnetotail reconnection jet

    Get PDF
    A significant fraction of the energy released by magnetotail reconnection appears to go into ion heating, but this heating is generally anisotropic. We examine ARTEMIS dual-spacecraft observations of a long-duration magnetotail exhaust generated by anti-parallel reconnection in conjunction with Particle-In-Cell simulations, showing spatial variations in the anisotropy across the outflow far (> 100di) downstream of the X-line. A consistent pattern is found in both the spacecraft data and the simulations: Whilst the total temperature across the exhaust is rather constant, near the boundaries Ti,|| dominates. The plasma is well-above the firehose threshold within patchy spatial regions at |BX| ∈ [0.1, 0.5]B0, suggesting that the drive for the instability is strong and the instability is too weak to relax the anisotropy. At the mid-plane (|BX|0.1 B0), Ti,⊥ > Ti,|| and ions undergo Speiser-like motion despite the large distance from the X-line

    Metallic characteristics in superlattices composed of insulators, NdMnO3/SrMnO3/LaMnO3

    Full text link
    We report on the electronic properties of superlattices composed of three different antiferromagnetic insulators, NdMnO3/SrMnO3/LaMnO3 grown on SrTiO3 substrates. Photoemission spectra obtained by tuning the x-ray energy at the Mn 2p -> 3d edge show a Fermi cut-off, indicating metallic behavior mainly originating from Mn e_g electrons. Furthermore, the density of states near the Fermi energy and the magnetization obey a similar temperature dependence, suggesting a correlation between the spin and charge degrees of freedom at the interfaces of these oxides

    Transport properties in Simplified Double Exchange model

    Full text link
    Transport properties of the manganites by the double-exchange mechanism are considered. The system is modeled by a simplified double-exchange model, i.e. the Hund coupling of the itinerant electron spins and local spins is simplified to the Ising-type one. The transport properties such as the electronic resistivity, the thermal conductivity, and the thermal power are calculated by using Dynamical mean-field theory. The transport quantities obtained qualitatively reproduce the ones observed in the manganites. The results suggest that the Simplified double exchange model underlies the key properties of the manganites.Comment: 5 pages, 5 eps figure

    Faxen relations in solids - a generalized approach to particle motion in elasticity and viscoelasticity

    Full text link
    A movable inclusion in an elastic material oscillates as a rigid body with six degrees of freedom. Displacement/rotation and force/moment tensors which express the motion of the inclusion in terms of the displacement and force at arbitrary exterior points are introduced. Using reciprocity arguments two general identities are derived relating these tensors. Applications of the identities to spherical particles provide several new results, including simple expressions for the force and moment on the particle due to plane wave excitation.Comment: 11 pages, 4 figure

    Linear response within the projection-based renormalization method: Many-body corrections beyond the random phase approximation

    Full text link
    The explicit evaluation of linear response coefficients for interacting many-particle systems still poses a considerable challenge to theoreticians. In this work we use a novel many-particle renormalization technique, the so-called projector-based renormalization method, to show how such coefficients can systematically be evaluated. To demonstrate the prospects and power of our approach we consider the dynamical wave-vector dependent spin susceptibility of the two-dimensional Hubbard model and also determine the subsequent magnetic phase diagram close to half-filling. We show that the superior treatment of (Coulomb) correlation and fluctuation effects within the projector-based renormalization method significantly improves the standard random phase approximation results.Comment: 17 pages, 7 figures, revised versio

    A Upf3b-mutant mouse model with behavioral and neurogenesis defects.

    Get PDF
    Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). Here, we report the generation and characterization of mice harboring a null Upf3b allele. These Upf3b-null mice exhibit deficits in fear-conditioned learning, but not spatial learning. Upf3b-null mice also have a profound defect in prepulse inhibition (PPI), a measure of sensorimotor gating commonly deficient in individuals with SCZ and other brain disorders. Consistent with both their PPI and learning defects, cortical pyramidal neurons from Upf3b-null mice display deficient dendritic spine maturation in vivo. In addition, neural stem cells from Upf3b-null mice have impaired ability to undergo differentiation and require prolonged culture to give rise to functional neurons with electrical activity. RNA sequencing (RNAseq) analysis of the frontal cortex identified UPF3B-regulated RNAs, including direct NMD target transcripts encoding proteins with known functions in neural differentiation, maturation and disease. We suggest Upf3b-null mice serve as a novel model system to decipher cellular and molecular defects underlying ID and neurodevelopmental disorders

    Magnetic Reconnection and Intermittent Turbulence in the Solar Wind

    Get PDF
    A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussian fluctuations in increments of the magnetic field vector, B\mathbf{B}, that are spatially and temporally non-uniform. The reconnection events and current sheets are found to be concentrated in intervals of intermittent turbulence, identified using the partial variance of increments method: within the most non-Gaussian 1% of fluctuations in B\mathbf{B}, we find 87%-92% of reconnection exhausts and ∼\sim9% of current sheets. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed from the dataset. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which in turn are progressively more likely to correspond to sites of magnetic reconnection. These results could have far reaching implications for laboratory and astrophysical plasmas where turbulence and magnetic reconnection are ubiquitous.Comment: 5 pages, 3 figures, submitted to Physical Review Letter
    • …
    corecore