10,323 research outputs found

    Nonleptonic two-body B-decays including axial-vector mesons in the final state

    Full text link
    We present a systematic study of exclusive charmless nonleptonic two-body B decays including axial-vector mesons in the final state. We calculate branching ratios of B\to PA, VA and AA decays, where A, V and P denote an axial-vector, a vector and a pseudoscalar meson, respectively. We assume naive factorization hypothesis and use the improved version of the nonrelativistic ISGW quark model for form factors in B\to A transitions. We include contributions that arise from the effective \Delta B=1 weak Hamiltonian H_{eff}. The respective factorized amplitude of these decays are explicitly showed and their penguin contributions are classified. We find that decays B^-to a_1^0\pi^-,\barB^0\to a_1^{\pm}\pi^{\mp}, B^-\to a_1^-\bar K^0, \bar B^0\to a_1^+K^-, \bar B^0\to f_1\bar K^0, B^-\to f_1K^-, B^-\to K_1^-(1400)\etap, B^-\to b_1^-\bar K^{0}, and \bar B^0\to b_1^+\pi^-(K^-) have branching ratios of the order of 10^{-5}. We also study the dependence of branching ratios for B \to K_1P(V,A) decays (K_1=K_1(1270),K_1(1400)) with respect to the mixing angle between K_A and K_B.Comment: 28 pages, 2 tables and one reference added, notation changed in appendices, some numerical results and abstract correcte

    Tensor mesons produced in tau lepton decays

    Full text link
    Light tensor mesons (T = a_2, f_2 and K_2^*) can be produced in decays of tau leptons. In this paper we compute the branching ratios of tau --> T pi nu decays by assuming the dominance of intermediate virtual states to model the form factors involved in the relevant hadronic matrix element. The exclusive f_2(1270) pi^- decay mode turns out to have the largest branching ratio, of O(10^-4) . Our results indicate that the contributions of tensor meson intermediate states to the three-pseudoscalar channels of tau decays are rather small.Comment: 10 pages, 1 figure. Version accepted for publication in PRD, some typos are corrected and comments are added in section 4. Conclusions remain unchange

    Dynamics of soliton-like solutions for slowly varying, generalized gKdV equations: refraction vs. reflection

    Full text link
    In this work we continue the description of soliton-like solutions of some slowly varying, subcritical gKdV equations. In this opportunity we describe, almost completely, the allowed behaviors: either the soliton is refracted, or it is reflected by the potential, depending on its initial energy. This last result describes a new type of soliton-like solution for gKdV equations, also present in the NLS case. Moreover, we prove that the solution is not pure at infinity, unlike the standard gKdV soliton.Comment: 51 pages, submitte

    Tuning surface metallicity and ferromagnetism by hydrogen adsorption at the polar ZnO(0001) surface

    Full text link
    The adsorption of hydrogen on the polar Zn-ended ZnO(0001) surface has been investigated by density functional {\it ab-initio} calculations. An on top H(1x1) ordered overlayer with genuine H-Zn chemical bonds is shown to be energetically favorable. The H covered surface is metallic and spin-polarized, with a noticeable magnetic moment at the surface region. Lower hydrogen coverages lead to strengthening of the H-Zn bonds, corrugation of the surface layer and to an insulating surface. Our results explain experimental observations of hydrogen adsorption on this surface, and not only predict a metal-insulator transition, but primarily provide a method to reversible switch surface magnetism by varying the hydrogen density on the surface.Comment: 4 pages, 3 figure

    The Dog on the Ship: The "Canis Major Dwarf Galaxy" as an Outlying Part of the Argo Star System

    Full text link
    Overdensities in the distribution of low latitude, 2MASS giant stars are revealed by systematically peeling away from sky maps the bulk of the giant stars conforming to ``isotropic'' density laws generally accounting for known Milky Way components. This procedure, combined with a higher resolution treatment of the sky density of both giants and dust allows us to probe to lower Galactic latitudes than previous 2MASS giant star studies. While the results show the swath of excess giants previously associated with the Monoceros ring system in the second and third Galactic quadrants at distances of 6-20 kpc, we also find a several times larger overdensity of giants in the same distance range concentrated in the direction of the ancient constellation Argo. Isodensity contours of the large structure suggest that it is highly elongated and inclined by about 3 deg to the disk, although details of the structure -- including the actual location of highest density, overall extent, true shape -- and its origin, remain unknown because only a fraction of it lies outside highly dust-obscured, low latitude regions. Nevertheless, our results suggest that the 2MASS M giant overdensity previously claimed to represent the core of a dwarf galaxy in Canis Major (l ~ 240 deg) is an artifact of a dust extinction window opening to the overall density rise to the more significant Argo structure centered at larger longitude (l ~ 290 +- 10 deg, b ~ -4 +- 2 deg).Comment: 4 pages, 4 figure

    Langevin theory of absorbing phase transitions with a conserved magnitude

    Full text link
    The recently proposed Langevin equation, aimed to capture the relevant critical features of stochastic sandpiles, and other self-organizing systems is studied numerically. This equation is similar to the Reggeon field theory, describing generic systems with absorbing states, but it is coupled linearly to a second conserved and static (non-diffusive) field. It has been claimed to represent a new universality class, including different discrete models: the Manna as well as other sandpiles, reaction-diffusion systems, etc. In order to integrate the equation, and surpass the difficulties associated with its singular noise, we follow a numerical technique introduced by Dickman. Our results coincide remarkably well with those of discrete models claimed to belong to this universality class, in one, two, and three dimensions. This provides a strong backing for the Langevin theory of stochastic sandpiles, and to the very existence of this new, yet meagerly understood, universality class.Comment: 4 pages, 3 eps figs, submitted to PR

    Absorbing states and elastic interfaces in random media: two equivalent descriptions of self-organized criticality

    Full text link
    We elucidate a long-standing puzzle about the non-equilibrium universality classes describing self-organized criticality in sandpile models. We show that depinning transitions of linear interfaces in random media and absorbing phase transitions (with a conserved non-diffusive field) are two equivalent languages to describe sandpile criticality. This is so despite the fact that local roughening properties can be radically different in the two pictures, as explained here. Experimental implications of our work as well as promising paths for future theoretical investigations are also discussed.Comment: 4 pages. 2 Figure

    The general relativistic infinite plane

    Get PDF
    Uniform fields are one of the simplest and most pedagogically useful examples in introductory courses on electrostatics or Newtonian gravity. In general relativity there have been several proposals as to what constitutes a uniform field. In this article we examine two metrics that can be considered the general relativistic version of the infinite plane with finite mass per unit area. The first metric is the 4D version of the 5D "brane" world models which are the starting point for many current research papers. The second case is the cosmological domain wall metric. We examine to what extent these different metrics match or deviate from our Newtonian intuition about the gravitational field of an infinite plane. These solutions provide the beginning student in general relativity both computational practice and conceptual insight into Einstein's field equations. In addition they do this by introducing the student to material that is at the forefront of current research.Comment: Accepted for publication in the American Journal of Physic
    • …
    corecore