480 research outputs found

    Faint X-ray Sources in the Globular Cluster Terzan 5

    Get PDF
    We report our analysis of a Chandra X-ray observation of the rich globular cluster Terzan 5, in which we detect 50 sources to a limiting 1.0-6 keV X-ray luminosity of 3*10^{31} ergs/s within the half-mass radius of the cluster. Thirty-three of these have L_X>10^{32} ergs/s, the largest number yet seen in any globular cluster. In addition to the quiescent low-mass X-ray binary (LMXB, identified by Wijnands et al.), another 12 relatively soft sources may be quiescent LMXBs. We compare the X-ray colors of the harder sources in Terzan 5 to the Galactic Center sources studied by Muno and collaborators, and find the Galactic Center sources to have harder X-ray colors, indicating a possible difference in the populations. We cannot clearly identify a metallicity dependence in the production of low-luminosity X-ray binaries in Galactic globular clusters, but a metallicity dependence of the form suggested by Jordan et al. for extragalactic LMXBs is consistent with our data.Comment: 15 pages, 10 figures (3 color). Resubmitted to ApJ after incorporating referee comments. v2: Added references to introductio

    XMM-Newton Spectroscopy of the Accretion-Driven Millisecond X-ray Pulsar XTE J1751-305 in Outburst

    Get PDF
    We present an analysis of the first high-resolution spectra measured from an accretion-driven millisecond X-ray pulsar in outburst. We observed XTE J1751-305 with XMM-Newton on 2002 April 7 for approximately 35 ksec. Using a simple absorbed blackbody plus power-law model, we measure an unabsorbed flux of (6.6 +/- 0.1) * 10^(-10) erg/cm^2/s (0.5--10.0 keV). A hard power-law component (Gamma = 1.44 +/- 0.01) contributes 83% of the unabsorbed flux in the 0.5-10.0 keV band, but a blackbody component (kT = 1.05 +/- 0.01 keV) is required. We find no clear evidence for narrow or broad emission or absorption lines in the time-averaged spectra, and the sensitivity of this observation has allowed us to set constraining upper-limits on the strength of important features. The lack of line features is at odds with spectra measured from some other X-ray binaries which share some similarities with XTE J1751-305. We discuss the implications of these findings on the accretion flow geometry in XTE J1751-305.Comment: 5 pages, 3 figures (2 color). ApJ Letters, accepted. Uses emulateapj.st

    Identification of the optical and quiescent counterparts to the bright X-ray transient in NGC 6440

    Get PDF
    After 3 years of quiescence, the globular cluster NGC 6440 exhibited a bright transient X-ray source turning on in August 2001, as noted with the RXTE All-Sky Monitor. We carried out a short target of opportunity observation with the Chandra X-ray Observatory and are able to associate the transient with the brightest of 24 X-ray sources detected during quiescence in July 2000 with Chandra. Furthermore, we securely identify the optical counterpart and determine that the 1998 X-ray outburst in NGC 6440 was from the same object. This is the first time that an optical counterpart to a transient in a globular cluster is securely identified. Since the transient is a type I X-ray burster, it is established that the compact accretor is a neutron star. Thus, this transient provides an ideal case to study the quiescent emission in the optical and X-ray of a transiently accreting neutron star while knowing the distance and reddening accurately. One model that fits the quiescent spectrum is an absorbed power law plus neutron star hydrogen atmosphere model. We find an intrinsic neutron star radius of 17_{-12}^{+31} km and an unabsorbed bolometric luminosity for the neutron star atmosphere of (2.1+/-0.8)E33 erg/s which is consistent with predictions for a cooling neutron star.Comment: Accepted for publication in ApJ Letter

    Chandra/HETGS Spectroscopy of the Galactic Black Hole GX 339-4: A Relativistic Iron Line and Evidence for a Seyfert-like Warm Absorber

    Full text link
    We observed the Galactic black hole GX 339-4 with the Chandra High Energy Transmission Grating Spectrometer (HETGS) for 75 ksec during the decline of its 2002-2003 outburst. The sensitivity of this observation provides an unprecedented glimpse of a Galactic black hole at about a tenth of the luminosity of the outburst peak. The continuum spectrum is well described by a model consisting of multicolor disk blackbody (kT = 0.6 keV) and power-law (Gamma = 2.5) components. X-ray reflection models yield improved fits. A strong, relativistic Fe K-alpha emission line is revealed, indicating that the inner disk extends to the innermost stable circular orbit. The breadth of the line is sufficient to suggest that GX 339-4 may harbor a black hole with significant angular momentum. Absorption lines from H-like and He-like O, and He-like Ne and Mg are detected, as well as lines which are likely due to Ne II and Ne III. The measured line properties make it difficult to associate the absorption with the coronal phase of the interstellar medium. A scenario wherein the absorption lines are due to an intrinsic AGN-like warm-absorber geometry -- perhaps produced by a disk wind in an extended disk-dominated state -- may be more viable. We compare our results to Chandra observations of the Galactic black hole candidate XTE J1650-500, and discuss our findings in terms of prominent models for Galactic black hole accretion flows and connections to supermassive black holes.Comment: 20 pages, 11 postscript figure files (many in color), uses emulateapj.sty and apjfonts.sty, slightly expanded, accepted for publication in Ap

    Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748-676 back to quiescence

    Full text link
    The quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 recently started the transition to quiescence following an accretion outburst that lasted more than 24 years. We report on two Chandra and twelve Swift observations performed within five months after the end of the outburst. The Chandra spectrum is composed of a soft, thermal component that fits to a neutron star atmosphere model with kT^inf~0.12 keV, joined by a hard powerlaw tail that contributes ~20% of the total 0.5-10 keV unabsorbed flux. The combined Chandra/Swift data set reveals a relatively hot and luminous quiescent system with a temperature of kT^inf~0.11-0.13 keV and a bolometric thermal luminosity of ~8.1E33-1.6E34 (d/7.4 kpc)^2 erg/s. We discuss our results in the context of cooling neutron star models.Comment: Accepted for publication in MNRAS Letters, moderate revision according to referee report, added one plot to figure 2 and included new Swift observations, 5 pages, 2 figure

    Simultaneous Chandra and RXTE Spectroscopy of the Microquasar H~1743-322: Clues to Disk Wind and Jet Formation from a Variable Ionized Outflow

    Full text link
    We observed the bright phase of the 2003 outburst of the Galactic black hole candidate H 1743-322 in X-rays simultaneously with Chandra and RXTE on four occasions. The Chandra/HETGS spectra reveal narrow, variable (He-like) Fe XXV and (H-like) Fe XXVI resonance absorption lines. In the first observation, the Fe XXVI line has a FWHM of 1800 +/- 400 km/s and a blue-shift of 700 +/- 200 km/s, suggesting that the highly ionized medium is an outflow. Moreover, the Fe XXV line is observed to vary significantly on a timescale of a few hundred seconds in the first observation, which corresponds to the Keplerian orbital period at approximately 1 E+4 gravitational radii. Our models for the absorption geometry suggest that a combination of geometric effects and changing ionizing flux are required to account for the large changes in line flux observed between observations, and that the absorption likely occurs at a radius less than 1 E+4 radii for a 10 Msun black hole. Viable models for the absorption geometry include cyclic absorption due to an accretion disk structure, absorption in a clumpy outflowing disk wind, or possibly a combination of these two. If the wind in H 1743-322 has unity filling factor, the highest implied mass outflow rate is 20 percent of the Eddington mass accretion rate. This wind may be a hot precursor to the Seyfert-like, outflowing "warm absorber" geometries recently found in the Galactic black holes GX 339-4 and XTE J1650-500. We discuss these findings in the context of ionized Fe absorption lines found in the spectra of other Galactic sources, and connections to warm absorbers, winds, and jets in other accreting systems.Comment: 18 pages, 7 figures, 5 in color, subm. to ApJ. Uses emulateapj.sty and apjfonts.st

    New Cataclysmic Variables and other Exotic Binaries in the Globular Cluster 47 Tucanae

    Full text link
    We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications we used near-ultraviolet (NUV) and optical images from the Hubble Space Telescope, in combination with X-ray results from the Chandra X-ray Observatory. This allowed us to build the deepest NUV CV luminosity function of the cluster to date. We found that the CVs in 47 Tuc are more concentrated towards the cluster center than the main sequence turnoff stars. We compared our results to the CV populations of the core-collapsed globular clusters NGC 6397 and NGC 6752. We found that 47 Tuc has fewer bright CVs per unit mass than those two other clusters. That suggests that dynamical interactions in core-collapsed clusters play a major role creating new CVs. In 47 Tuc, the CV population is probably dominated by primordial and old dynamically formed systems. We estimated that the CVs in 47 Tuc have total masses of approx. 1.4 M_sun. We also found that the X-ray luminosity function of the CVs in the three clusters is bimodal. Additionally, we discuss a possible double degenerate system and an intriguing/unclassified object. Finally, we present four systems that could be millisecond pulsar companions given their X-ray and NUV/optical colors. For one of them we present very strong evidence for being an ablated companion. The other three could be CO- or He-WDs.Comment: Published on MNRAS. 31 Pages, 23 Figures, 5 Tables. Minor changes with respect to previous arXiv versio

    High frequency quasi-periodic oscillations in the black hole X-ray transient XTE J1650-500

    Get PDF
    We report the detection of high frequency variability in the black hole X-ray transient XTE J1650-500. A quasi-periodic oscillation (QPO) was found at 250 Hz during a transition from the hard to the soft state. We also detected less coherent variability around 50 Hz, that disappeared when the 250 Hz QPO showed up. There are indications that when the energy spectrum hardened the QPO frequency increased from ~110 Hz to ~270 Hz, although the observed frequencies are also consistent with being 1:2:3 harmonics of each other. Interpreting the 250 Hz as the orbital frequency at the innermost stable orbit around a Schwarzschild black hole leads to a mass estimate of 8.2 Msun. The spectral results by Miller et al.(2002, ApJ, 570, L69), which suggest considerable black hole spin, would imply a higher mass.Comment: Submitted to ApJ, 12 pages including 2 figure

    Further X-ray observations of EXO 0748-676 in quiescence: evidence for a cooling neutron star crust

    Get PDF
    In late 2008, the quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 started a transition from outburst to quiescence, after it had been actively accreting for more than 24 years. In a previous work, we discussed Chandra and Swift observations obtained during the first five months after this transition. Here, we report on further X-ray observations of EXO 0748-676, extending the quiescent monitoring to 1.6 years. Chandra and XMM-Newton data reveal quiescent X-ray spectra composed of a soft, thermal component that is well-fitted by a neutron star atmosphere model. An additional hard powerlaw tail is detected that changes non-monotonically over time, contributing between 4 and 20 percent to the total unabsorbed 0.5-10 keV flux. The combined set of Chandra, XMM-Newton and Swift data reveals that the thermal bolometric luminosity fades from ~1E34 to 6E33 (D/7.4 kpc)^2 erg/s, whereas the inferred neutron star effective temperature decreases from ~124 to 109 eV. We interpret the observed decay as cooling of the neutron star crust and show that the fractional quiescent temperature change of EXO 0748-676 is markedly smaller than observed for three other neutron star X-ray binaries that underwent prolonged accretion outbursts.Comment: Moderate textual revisions according to referee report, accepted for publication in MNRA

    RXTE observations of the neutron star low-mass X-ray binary GX 17+2: correlated X-ray spectral and timing behavior

    Get PDF
    We have analyzed ~600 ks of Rossi X-ray Timing Explorer data of the neutron star low-mass X-ray binary and Z source GX 17+2. A study was performed of the properties of the noise components and quasi-periodic oscillations (QPOs) as a function of the spectral properties, with the main goal to study the relation between the frequencies of the horizontal branch and upper kHz QPOs. It was found that when the upper kHz QPO frequency is below 1030 Hz these frequencies correlate, whereas above 1030 Hz they anti-correlate. GX 17+2 is the first source in which this is observed. We also found that the frequency difference of the high frequency QPOs was not constant and that the quality factors (Q values) of the HBO, its second harmonic, and the kHz QPOs are similar, and vary almost hand in hand by a factor of more than three. Observations of the normal branch oscillations during two type I X-ray bursts showed that their absolute amplitude decreased as the flux from the neutron star became stronger. We discuss these and other findings in terms of models that have been proposed for these phenomena. We also compare the behavior of GX 17+2 and other Z sources with that of black hole sources and consider the possibility that the mass accretion rate might not be driving force behind all spectral and variability changes.Comment: 35 pages, including 14 figures. Accepted for publication in ApJ. Revised discussion, one new figure, and some minor figure changes with respect to old versio
    • 

    corecore