120 research outputs found

    Quasi Regular Polyhedra and Their Duals with Coxeter Symmetries Represented by Quaternions I

    Full text link
    In two series of papers we construct quasi regular polyhedra and their duals which are similar to the Catalan solids. The group elements as well as the vertices of the polyhedra are represented in terms of quaternions. In the present paper we discuss the quasi regular polygons (isogonal and isotoxal polygons) using 2D Coxeter diagrams. In particular, we discuss the isogonal hexagons, octagons and decagons derived from 2D Coxeter diagrams and obtain aperiodic tilings of the plane with the isogonal polygons along with the regular polygons. We point out that one type of aperiodic tiling of the plane with regular and isogonal hexagons may represent a state of graphene where one carbon atom is bound to three neighboring carbons with two single bonds and one double bond. We also show how the plane can be tiled with two tiles; one of them is the isotoxal polygon, dual of the isogonal polygon. A general method is employed for the constructions of the quasi regular prisms and their duals in 3D dimensions with the use of 3D Coxeter diagrams.Comment: 22 pages, 16 figure

    Wigner's Spins, Feynman's Partons, and Their Common Ground

    Full text link
    The connection between spin and symmetry was established by Wigner in his 1939 paper on the Poincar\'e group. For a massive particle at rest, the little group is O(3) from which the concept of spin emerges. The little group for a massless particle is isomorphic to the two-dimensional Euclidean group with one rotational and two translational degrees of freedom. The rotational degree corresponds to the helicity, and the translational degrees to the gauge degree of freedom. The question then is whether these two different symmetries can be united. Another hard-pressing problem is Feynman's parton picture which is valid only for hadrons moving with speed close to that of light. While the hadron at rest is believed to be a bound state of quarks, the question arises whether the parton picture is a Lorentz-boosted bound state of quarks. We study these problems within Einstein's framework in which the energy-momentum relations for slow particles and fast particles are two different manifestations one covariant entity.Comment: LaTex 12 pages, 3 figs, based on the lectures delivered at the Advanced Study Institute on Symmetries and Spin (Prague, Czech Republic, July 2001

    Fourier-Space Crystallography as Group Cohomology

    Full text link
    We reformulate Fourier-space crystallography in the language of cohomology of groups. Once the problem is understood as a classification of linear functions on the lattice, restricted by a particular group relation, and identified by gauge transformation, the cohomological description becomes natural. We review Fourier-space crystallography and group cohomology, quote the fact that cohomology is dual to homology, and exhibit several results, previously established for special cases or by intricate calculation, that fall immediately out of the formalism. In particular, we prove that {\it two phase functions are gauge equivalent if and only if they agree on all their gauge-invariant integral linear combinations} and show how to find all these linear combinations systematically.Comment: plain tex, 14 pages (replaced 5/8/01 to include archive preprint number for reference 22

    Relativistic nature of a magnetoelectric modulus of Cr_2O_3-crystals: a new 4-dimensional pseudoscalar and its measurement

    Full text link
    Earlier, the magnetoelectric effect of chromium sesquioxide Cr_2O_3 has been determined experimentally as a function of temperature. One measures the electric field-induced magnetization on Cr_2O_3 crystals or the magnetic field-induced polarization. From the magnetoelectric moduli of Cr_2O_3 we extract a 4-dimensional relativistic invariant pseudoscalar α~\widetilde{\alpha}. It is temperature dependent and of the order of 10^{-4}/Z_0, with Z_0 as vacuum impedance. We show that the new pseudoscalar is odd under parity transformation and odd under time inversion. Moreover, α~\widetilde{\alpha} is for Cr_2O_3 what Tellegen's gyrator is for two port theory, the axion field for axion electrodynamics, and the PEMC (perfect electromagnetic conductor) for electrical engineering.Comment: Revtex, 36 pages, 9 figures (submitted in low resolution, better quality figures are available from the authors

    Theory of Superconducting TcT_{c} of doped fullerenes

    Get PDF
    We develop the nonadiabatic polaron theory of superconductivity of MxC60M_{x}C_{60} taking into account the polaron band narrowing and realistic electron-phonon and Coulomb interactions. We argue that the crossover from the BCS weak-coupling superconductivity to the strong-coupling polaronic and bipolaronic superconductivity occurs at the BCS coupling constant λ1\lambda\sim 1 independent of the adiabatic ratio, and there is nothing ``beyond'' Migdal's theorem except small polarons for any realistic electron-phonon interaction. By the use of the polaronic-type function and the ``exact'' diagonalization in the truncated Hilbert space of vibrons (``phonons'') we calculate the ground state energy and the electron spectral density of the C60C_{60}^{-} molecule. This allows us to describe the photoemission spectrum of C60C_{60}^{-} in a wide energy region and determine the electron-phonon interaction. The strongest coupling is found with the high-frequency pinch Ag2A_{g2} mode and with the Frenkel exciton. We clarify the crucial role of high-frequency bosonic excitations in doped fullerenes which reduce the bare bandwidth and the Coulomb repulsion allowing the intermediate and low-frequency phonons to couple two small polarons in a Cooper pair. The Eliashberg-type equations are solved for low-frequency phonons. The value of the superconducting TcT_{c}, its pressure dependence and the isotope effect are found to be in a remarkable agreement with the available experimental data.Comment: 20 pages, Latex, 4 figures available upon reques

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures

    Full text link
    Spatial and/or temporal propagation of light waves in periodic optical structures offers a rather unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based on either spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair-production, the Dirac oscillator, the relativistic Kronig-Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.Comment: review article (invited), 14 pages, 7 figures, 105 reference

    Die ärztlich-fürsorgerische Aufgabe bei Sexualdelinquenten

    No full text
    corecore