146 research outputs found

    Engineering Analysis of Vacuum Pump Requirements of AGS/RHIC Beam Transfer Line

    Full text link

    The Relationship Between Early Life Stress and Microstructural Integrity of the Corpus Callosum in a Non-Clinical Population

    Get PDF
    Background: Previous studies have examined the impact of early life stress (ELS) on the gross morphometry of brain regions, including the corpus callosum. However, studies have not examined the relationship between ELS and the microstructural integrity of the brain. Previous studies have examined the impact of early life stress (ELS) on the gross morphometry of brain regions, including the corpus callosum. However, studies have not examined the relationship between ELS and the microstructural integrity of the brain. Methods: In the present study we evaluated this relationship in healthy non-clinical participants using diffusion tensor imaging (DTI) and self-reported history of ELS. Results: Regression analyses revealed significant reductions in fractional anisotropy (FA) within the genu of the corpus callosum among those exposed to the greatest number of early life stressors, suggesting reduced microstructural integrity associated with increased ELS. These effects were most pronounced in the genu of the corpus callosum compared to the body and splenium, and were evident for females rather than males despite no differences in total ELS exposure between the sexes. In addition, a further comparison of those participants who were exposed to no ELS vs. three or more ELS events revealed lower FA in the genu of the corpus callosum among the ELS-exposed group, with trends of FA reduction in the body and the whole corpus callosum. By contrast, there were no relationships between ELS and volumetric analysis of the CC regions. The two group did not differ significantly on measures of current depression, stress or anxiety. Conclusion: Our results reveal that greater exposure to ELS is associated with microstructural alterations in the white matter in the absence of significant volumetric changes. Importantly, our results indicate that exposure to ELS is associated with abnormalities on DTI despite the absence of clinically significant psychiatric symptoms. Future studies are needed to determine whether specific types of ELS are more likely to impact brain structure and function

    Музейна справа сучасної Франції на прикладі музею Бранлі

    Get PDF
    The article sums up the results of the first year of operation du quai Braniy. It also sheds light on multicultural image of modern France

    Formation of the Xigaze Metamorphic Sole under Tibetan continental lithosphere reveals generic characteristics of subduction initiation

    Get PDF
    Metamorphic soles found under allochthonous oceanic lithosphere, or ophiolites, are interpreted as derived from lower plate oceanic crust material accreted to upper plate mantle during intraoceanic subduction initiation. Their metamorphic evolution is inferred to reflect the thermal structure at the site of subduction nucleation, with granulite-bearing soles linked to initiation at hot spreading centers. Here we present garnet Lu-Hf geochronology for the granulite-bearing sole of the Xigaze ophiolite in South Tibet, whose oceanic crust formed ∼130 Ma through continental forearc extension. Our study shows that sole metamorphism was ongoing by 144 Ma, implying that north-directed subduction began at least 14 million years before oceanic forearc spreading. The upper plate at the time of subduction initiation was thus continental, not oceanic. Our results demonstrate that metamorphic characteristics of soles are independent of the specific tectonic setting at the subduction nucleation site and rather provide generic constraints on the subduction initiation process

    Hyperactivity and Hypermotivation Associated With Increased Striatal mGluR1 Signaling in a Shank2 Rat Model of Autism

    Get PDF
    Mutations in the SHANK family of genes have been consistently identified in genetic and genomic screens of autism spectrum disorder (ASD). The functional overlap of SHANK with several other ASD-associated genes suggests synaptic dysfunction as a convergent mechanism of pathophysiology in ASD. Although many ASD-related mutations result in alterations to synaptic function, the nature of those dysfunctions and the consequential behavioral manifestations are highly variable when expressed in genetic mouse models. To investigate the phylogenetic conservation of phenotypes resultant of Shank2 loss-of-function in a translationally relevant animal model, we generated and characterized a novel transgenic rat with a targeted mutation of the Shank2 gene, enabling an evaluation of gene-associated phenotypes, the elucidation of complex behavioral phenotypes, and the characterization of potential translational biomarkers. The Shank2 loss-of-function mutation resulted in a notable phenotype of hyperactivity encompassing hypermotivation, increased locomotion, and repetitive behaviors. Mutant rats also expressed deficits in social behavior throughout development and in the acquisition of operant tasks. The hyperactive phenotype was associated with an upregulation of mGluR1 expression, increased dendritic branching, and enhanced long-term depression (LTD) in the striatum but opposing morphological and cellular alterations in the hippocampus (HP). Administration of the mGluR1 antagonist JNJ16259685 selectively normalized the expression of striatally mediated repetitive behaviors and physiology but had no effect on social deficits. Finally, Shank2 mutant animals also exhibited alterations in electroencephalography (EEG) spectral power and event-related potentials, which may serve as translatable EEG biomarkers of synaptopathic alterations. Our results show a novel hypermotivation phenotype that is unique to the rat model of Shank2 dysfunction, in addition to the traditional hyperactive and repetitive behaviors observed in mouse models. The hypermotivated and hyperactive phenotype is associated with striatal dysfunction, which should be explored further as a targetable mechanism for impairment in ASD

    Orally administered DTPA di-ethyl ester for decorporation of 241 Am in dogs: Assessment of safety and efficacy in an inhalation-contamination model

    Get PDF
    Currently two injectable products of diethylenetriaminepentaacetic acid (DTPA) are U.S. Food and Drug Administration (FDA) approved for decorporation of 241Am, however, an oral product is considered more amenable in a mass casualty situation. The diethyl ester of DTPA, named C2E2, is being developed as an oral drug for treatment of internal radionuclide contamination

    Nunataryuk field campaigns: understanding the origin and fate of terrestrial organic matter in the coastal waters of the Mackenzie Delta region

    Get PDF
    Climate warming and related drivers of soil thermal change in the Arctic are expected to modify the distribution and dynamics of carbon contained in perennially frozen grounds. Thawing of permafrost in the Mackenzie River watershed of northwestern Canada, coupled with increases in river discharge and coastal erosion, triggers the release of terrestrial organic matter (OMt) from the largest Arctic drainage basin in North America into the Arctic Ocean. While this process is ongoing and its rate is accelerating, the fate of the newly mobilized organic matter as it transits from the watershed through the delta and into the marine system remains poorly understood. In the framework of the European Horizon 2020 Nunataryuk programme, and as part of the Work Package 4 (WP4) Coastal Waters theme, four field expeditions were conducted in the Mackenzie Delta region and southern Beaufort Sea from April to September 2019. The temporal sampling design allowed the survey of ambient conditions in the coastal waters under full ice cover prior to the spring freshet, during ice breakup in summer, and anterior to the freeze-up period in fall. To capture the fluvial–marine transition zone, and with distinct challenges related to shallow waters and changing seasonal and meteorological conditions, the field sampling was conducted in close partnership with members of the communities of Aklavik, Inuvik and Tuktoyaktuk, using several platforms, namely helicopters, snowmobiles, and small boats. Water column profiles of physical and optical variables were measured in situ, while surface water, groundwater, and sediment samples were collected and preserved for the determination of the composition and sources of OMt, including particulate and dissolved organic carbon (POC and DOC), and colored dissolved organic matter (CDOM), as well as a suite of physical, chemical, and biological variables. Here we present an overview of the standardized datasets, including hydrographic profiles, remote sensing reflectance, temperature and salinity, particle absorption, nutrients, dissolved organic carbon, particulate organic carbon, particulate organic nitrogen, CDOM absorption, fluorescent dissolved organic matter intensity, suspended particulate matter, total particulate carbon, total particulate nitrogen, stable water isotopes, radon in water, bacterial abundance, and a string of phytoplankton pigments including total chlorophyll. Datasets and related metadata can be found in Juhls et al. (2021) (https://doi.org/10.1594/PANGAEA.937587).</p

    Integrated Multi-Parameter Exploration Footprints of the Canadian Malartic Disseminated Au, McArthur River-Millennium Unconformity U, and Highland Valley Porphyry Cu Deposits: Preliminary Results from the NSERC-CMIC Mineral Exploration Footprints Research Network

    Get PDF
    Mineral exploration in Canada is increasingly focused on concealed and deeply buried targets, requiring more effective tools to detect large-scale ore-forming systems and to vector from their most distal margins to their high grade cores. A new generation of ore system models is required to achieve this. The Mineral Exploration Footprints Research Network is a consortium of 70 faculty, research associates, and students from 20 Canadian universities working with 30 mining, mineral exploration, and mining service providers to develop new approaches to ore system modelling based on more effective integration and visualization of multi-parameter geological-structural-mineralogical-lithogeochemical-petrophysical-geophysical exploration data. The Network is developing the next generation ore system models and exploration strategies at three sites based on integrated data visualization using self-consistent 3D Common Earth Models and geostatistical/machine learning technologies. Thus far over 60 footprint components and vectors have been identified at the Canadian Malartic stockwork-disseminated Au deposit, 20–30 at the McArthur-Millennium unconformity U deposits, and over 20 in the Highland Valley porphyry Cu system. For the first time, these are being assembled into comprehensive models that will serve as landmark case studies for data integration and analysis in the today’s challenging exploration environment
    corecore