75 research outputs found

    Voltage and temperature dependence of the grain boundary tunneling magnetoresistance in manganites

    Full text link
    We have performed a systematic analysis of the voltage and temperature dependence of the tunneling magnetoresistance (TMR) of grain boundaries (GB) in the manganites. We find a strong decrease of the TMR with increasing voltage and temperature. The decrease of the TMR with increasing voltage scales with an increase of the inelastic tunneling current due to multi-step inelastic tunneling via localized defect states in the tunneling barrier. This behavior can be described within a three-current model for magnetic tunnel junctions that extends the two-current Julliere model by adding an inelastic, spin-independent tunneling contribution. Our analysis gives strong evidence that the observed drastic decrease of the GB-TMR in manganites is caused by an imperfect tunneling barrier.Comment: to be published in Europhys. Lett., 8 pages, 4 figures (included

    Magnetic order in double-layer manganites (La(1-z)Pr(z))1.2Sr1.8Mn2O7: intrinsic properties and role of the intergrowths

    Full text link
    We report on an investigation of the double-layer manganite series (La(1-z)Pr(z))1.2Sr1.8Mn2O7 (0 <= z <= 1), carried out on single crystals by means of both macroscopic magnetometry and local probes of magnetism (muSR, 55Mn NMR). Muons and NMR demonstrate an antiferromagnetically ordered ground state at non-ferromagnetic compositions (z >= 0.6), while more moderate Pr substitutions (0.2 <= z <= 0.4) induce a spin reorientation transition within the ferromagnetic phase. A large magnetic susceptibility is detected at {Tc,TN} < T < 250K at all compositions. From 55Mn NMR spectroscopy, such a response is unambiguously assigned to the intergrowth of a ferromagnetic pseudocubic phase (La(1-z)Pr(z))(1-x)Sr(x)MnO3, with an overall volume fraction estimated as 0.5-0.7% from magnetometry. Evidence is provided for the coupling of the magnetic moments of these inclusions with the magnetic moments of the surrounding (La(1-z)Pr(z))1.2Sr1.8Mn2O7 phase, as in the case of finely dispersed impurities. We argue that the ubiquitous intergrowth phase may play a role in the marked first-order character of the magnetic transition and the metamagnetic properties above Tc reported for double-layer manganites.Comment: 11 pages, 9 figures. Submitted to Phys. Rev.

    Crystal and magnetic structures of Cr1/3NbSe2 from neutron diffraction

    Get PDF
    Neutron diffraction measurements of the Cr intercalated niobium diselenide Cr1/3NbSe2 together with magnetization measurements have revealed that this compound exhibits ferromagnetic ordering below TC = 96 K unlike a chiral helimagnetic order observed in the sulfide compound Cr1/3NbS2. As derived from neutron diffraction data, the Cr magnetic moments µCr = 2.83 ± 0.03 µB in Cr1/3NbSe2 are aligned within basal plane. The discrepancy in the magnetic states of Cr1/3NbS2 and Cr1/3NbSe2 is ascribed to the difference in the preferential site occupation of Cr ions in crystal lattices. In Cr1/3NbSe2, the Cr ions are predominantly distributed over 2b Wyckoff site, which determines a centrosymmetric character of the crystal structure unlike Cr1/3NbS2, where the Cr ions are mainly located in 2c position and the crystal structure is non-centrosymmetric

    Percolative phase separation induced by nonuniformly distributed excess oxygens

    Full text link
    The zero-field 139^{139}La and 55^{55}Mn nuclear magnetic resonances were studied in La0.8Ca0.2MnO3+δ\rm La_{0.8}Ca_{0.2}MnO_{3+\delta} with different oxygen stoichiometry δ\delta. The signal intensity, peak frequency and line broadening of the 139^{139}La NMR spectrum show that excess oxygens have a tendency to concentrate and establish local ferromagnetic ordering around themselves. These connect the previously existed ferromagnetic clusters embedded in the antiferromagnetic host, resulting in percolative conduction paths. This phase separation is not a charge segregation type, but a electroneutral type. The magnetoresistance peak at the temperature where percolative paths start to form provides a direct evidence that phase separation is one source of colossal magnetoresistance effect.Comment: 4 pages, 5 figure

    Low frequency 1/f noise in doped manganite grain-boundary junctions

    Full text link
    We have performed a systematic analysis of the low frequency 1/f-noise in single grain boundary junctions in the colossal magnetoresistance material La_{2/3}Ca_{1/3}MnO_{3-delta}. The grain boundary junctions were formed in epitaxial La_{2/3}Ca_{1/3}MnO_{3-delta} films deposited on SrTiO_3 bicrystal substrates and show a large tunneling magnetoresistance of up to 300% at 4.2 K as well as ideal, rectangular shaped resistance versus applied magnetic field curves. Below the Curie temperature T_C the measured 1/f noise is dominated by the grain boundary. The dependence of the noise on bias current, temperature and applied magnetic field gives clear evidence that the large amount of low frequency noise is caused by localized sites with fluctuating magnetic moments in a heavily disordered grain boundary region. At 4.2 K additional temporally unstable Lorentzian components show up in the noise spectra that are most likely caused by fluctuating clusters of interacting magnetic moments. Noise due to fluctuating domains in the junction electrodes is found to play no significant role.Comment: 9 pages, 7 figure

    Cobalt-Based Pyroxenes: A New Playground for Kitaev Physics and Ising Model Realization

    Full text link
    Recent advances in the study of cobaltites have unveiled their potential as a promising platform for realizing Kitaev physics in honeycomb systems and the Ising model in weakly coupled chain materials. In this manuscript, we explore the magnetic properties of pyroxene SrCoGe2_2O6_6 using a combination of neutron scattering, {\it ab initio} methods, and linear spin-wave theory. Through careful examination of inelastic neutron scattering powder spectra, we propose a modified Kitaev model to accurately describe the twisted chains of edge-sharing octahedra surrounding Co2+^{2+} ions. The extended Kitaev-Heisenberg model, including a significant anisotropic bond-dependent exchange term with K/J=0.96K/|J|=0.96, is identified as the key descriptor of the magnetic interactions in SrCoGe2_2O6_6. Furthermore, our heat capacity measurements reveal an effect of an external magnetic field (approximately 13~T) which shifts the system from a fragile antiferromagnetic ordering with TN=9T_{\mathrm{N}}=9~K to a field-induced state. We argue that pyroxenes, particularly those modified by substituting Ge with Si and its less extended pp orbitals, emerge as a novel platform for the Kitaev model. This opens up possibilities for advancing our understanding of Kitaev physics.Comment: 11 + 2 pages, 7 + 3 figure

    Crystal and magnetic structures of Cr1/3NbSe2 from neutron diffraction

    Get PDF
    Neutron diffraction measurements of the Cr intercalated niobium diselenide Cr1/3NbSe2 together with magnetization measurements have revealed that this compound exhibits ferromagnetic ordering below TC = 96 K unlike a chiral helimagnetic order observed in the sulfide compound Cr1/3NbS2. As derived from neutron diffraction data, the Cr magnetic moments µCr = 2.83 ± 0.03 µB in Cr1/3NbSe2 are aligned within basal plane. The discrepancy in the magnetic states of Cr1/3NbS2 and Cr1/3NbSe2 is ascribed to the difference in the preferential site occupation of Cr ions in crystal lattices. In Cr1/3NbSe2, the Cr ions are predominantly distributed over 2b Wyckoff site, which determines a centrosymmetric character of the crystal structure unlike Cr1/3NbS2, where the Cr ions are mainly located in 2c position and the crystal structure is non-centrosymmetric

    Area under the curve of methotrexate and creatinine clearance are outcome-determining factors in primary CNS lymphomas

    Get PDF
    Although high-dose methotrexate (HD-MTX) is the most effective drug against primary CNS lymphomas (PCNSL), outcome-determining variables related to its administration schedule have not been defined. The impact on toxicity and outcome of the area under the curve (AUC(MTX)), dose intensity (DI(MTX)) and infusion rate (IR(MTX)) of MTX and plasmatic creatinine clearance (CL(crea)) was investigated in a retrospective series of 45 PCNSL patients treated with three different HD-MTX-based combinations. Anticonvulsants were administered in 31 pts (69%). Age >60 years, anticonvulsant therapy, slow IR(MTX) (1100 micromol hl(-1) were independently associated with a better survival. Slow CL(crea) and high AUC(MTX) are favourable outcome-determining factors in PCNSL, while slow CL(crea) is significantly related to higher toxicity. AUC(MTX) significantly correlates with age, anticonvulsant therapy, IR(MTX), and DI(MTX). These findings, which seem to support the choice of an MTX dose >/=3 gm(-2) in a 4-6-h infusion, every 3-4 weeks, deserve to be assessed prospectively in future trials. MTX dose adjustments in patients with fast CL(crea) should be investigated
    corecore