98 research outputs found

    Sexual conflict over remating interval is modulated by the sex peptide pathway

    Get PDF
    Sexual conflict, in which the evolutionary interests of males and females diverge, shapes the evolution of reproductive systems across diverse taxa. Here we used the fruit fly to study sexual conflict in natural, three-way interactions comprising a female, her current and previous mates. We manipulated the potential for sexual conflict by using sex peptide receptor (SPR) null females and by varying remating from 3 to 48h, a period during which natural rematings frequently occur. SPR-lacking females do not respond to sex peptide transferred during mating and maintain virgin levels of high receptivity and low fecundity. In the absence of SPR there was a convergence of fitness interests, with all individuals gaining highest productivity at 5h remating. This suggests that the expression of sexual conflict was reduced. We observed an unexpected second male-specific advantage to early remating, resulting from an increase in the efficiency of second male sperm use. This early window of opportunity for exploitation by second males depended on the presence of SPR. The results suggest that the sex peptide pathway can modulate the expression of sexual conflict in this system, and show how variation in the selective forces that shape conflict and co-operation can be maintained

    Doubling of the bands in overdoped Bi2Sr2CaCu2O8-probable evidence for c-axis bilayer coupling

    Full text link
    We present high resolution ARPES data of the bilayer superconductor Bi2Sr2CaCu2O8 (Bi2212) showing a clear doubling of the near EF bands. This splitting approaches zero along the (0,0)-(pi,pi) nodal line and is not observed in single layer Bi2Sr2CuO6 (Bi2201), suggesting that the splitting is due to the long sought after bilayer splitting effect. The splitting has a magnitude of approximately 75 meV near the middle of the zone, extrapolating to about 100 meV near the (pi,0) poin

    Doping dependence of the many-body effects along the nodal direction in the high-Tc cuprate (Bi,Pb)_2Sr_2CaCu_2O_8

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is used to study the doping dependence of the lifetime and the mass renormalization of the low energy excitations in the high-Tc cuprate (Bi,Pb)_2Sr_2CaCu_2O_8 along the zone diagonal. We find a linear energy de-pendence of the scattering rate for the underdoped samples and a quadratic energy depend-ence in the overdoped case. The mass enhancement of the quasiparticles due to the many body effects at the Fermi energy is found to be in the order of 2 and the renormalization extends over a large energy range for both the normal and the superconducting state. The much discussed kink in the dispersion around 70 meV is interpreted as a small additional effect at low temperatures.Comment: 12 pages, 3 figure

    Mass-renormalized electronic excitations at (π\pi, 0) in the superconducting state of Bi2Sr2CaCu2O8+δBi_{2}Sr_{2}CaCu_{2}O_{8+\delta}

    Full text link
    Using high-resolution angle-resolved photoemission spectroscopy on Bi2Sr2CaCu2O8+δBi_{2}Sr_{2}CaCu_{2}O_{8+\delta}, we have made the first observation of a mass renormalization or "kink" in the E vs. k\vec k dispersion relation localized near (π,0)(\pi, 0). Compared to the kink observed along the nodal direction, this new effect is clearly stronger, appears at a lower energy near 40 meV, and is only present in the superconducting state. The kink energy scale defines a cutoff below which well-defined quasiparticle excitations occur. This effect is likely due to coupling to a bosonic excitation, with the most plausible candidate being the magnetic resonance mode observed in inelastic neutron scattering

    Negative phenotypic and genetic associations between copulation duration and longevity in male seed beetles

    Get PDF
    Reproduction can be costly and is predicted to trade-off against other characters. However, while these trade-offs are well documented for females, there has been less focus on aspects of male reproduction. Furthermore, those studies that have looked at males typically only investigate phenotypic associations, with the underlying genetics often ignored. Here, we report on phenotypic and genetic trade-offs in male reproductive effort in the seed beetle, Callosobruchus maculatus. We find that the duration of a male's first copulation is negatively associated with subsequent male survival, phenotypically and genetically. Our results are consistent with life-history theory and suggest that like females, males trade-off reproductive effort against longevity

    Relative Effectiveness of Mating Success and Sperm Competition at Eliminating Deleterious Mutations in Drosophila melanogaster

    Get PDF
    Condition-dependence theory predicts that sexual selection will facilitate adaptation by selecting against deleterious mutations that affect the expression of sexually selected traits indirectly via condition. Recent empirical studies have provided support for this prediction; however, their results do not elucidate the relative effects of pre- and postcopulatory sexual selection on deleterious mutations. We used the Drosophila melanogaster model system to discern the relative contributions of pre- and postcopulatory processes to selection against deleterious mutations. To assess second-male ejaculate competition success (P2; measured as the proportion of offspring attributable to the experimental male) and mating success, mutant and wild-type male D. melanogaster were given the opportunity to mate with females that were previously mated to a standard competitor male. This process was repeated for males subjected to a diet quality manipulation to test for effects of environmentally-manipulated condition on P2 and mating success. While none of the tested mutations affected P2, there was a clear effect of condition. Conversely, several of the mutations affected mating success, while condition showed no effect. Our results suggest that precopulatory selection may be more effective than postcopulatory selection at removing deleterious mutations. The opposite result obtained for our diet manipulation points to an interesting discrepancy between environmental and genetic manipulations of condition, which may be explained by the multidimensionality of condition. Establishing whether the various stages of sexual selection affect deleterious mutations differently, and to what extent, remains an important issue to resolve

    At-risk elementary school children with one year of classroom music instruction are better at keeping a beat

    Get PDF
    Temporal processing underlies both music and language skills. There is increasing evidence that rhythm abilities track with reading performance and that language disorders such as dyslexia are associated with poor rhythm abilities. However, little is known about how basic time-keeping skills can be shaped by musical training, particularly during critical literacy development years. This study was carried out in collaboration with Harmony Project, a non-profit organization providing free music education to children in the gang reduction zones of Los Angeles. Our findings reveal that elementary school children with just one year of classroom music instruction perform more accurately in a basic finger-tapping task than their untrained peers, providing important evidence that fundamental time-keeping skills may be strengthened by short-term music training. This sets the stage for further examination of how music programs may be used to support the development of basic skills underlying learning and literacy, particularly in at-risk populations which may benefit the most

    Sperm gatekeeping : 3D imaging reveals a constricted entrance to zebra finch sperm storage tubules

    Get PDF
    Females across many internally fertilizing taxa store sperm, often in specialized storage organs in their reproductive tracts. In birds, several hundred sperm storage tubules exist in the utero-vaginal junction of the oviduct, and there is growing evidence that sperm storage in these tubules is selective. The mechanisms underlying female sperm storage in birds remain unknown because of our limited ability to make three-dimensional, live observations inside the large, muscular avian oviduct. Here, we describe a new application of fluorescence selective plane illumination microscopy to optically section oviduct tissue from zebra finch Taeniopygia guttata females label free by harnessing tissue autofluorescence. Our data provide the first description of the three-dimensional structure of sperm storage organs in any vertebrate to the best of our knowledge and reveal the presence of gate-like constricted openings that may play a role in sperm selection
    corecore