4,704 research outputs found
SINVAD: Search-based Image Space Navigation for DNN Image Classifier Test Input Generation
The testing of Deep Neural Networks (DNNs) has become increasingly important
as DNNs are widely adopted by safety critical systems. While many test adequacy
criteria have been suggested, automated test input generation for many types of
DNNs remains a challenge because the raw input space is too large to randomly
sample or to navigate and search for plausible inputs. Consequently, current
testing techniques for DNNs depend on small local perturbations to existing
inputs, based on the metamorphic testing principle. We propose new ways to
search not over the entire image space, but rather over a plausible input space
that resembles the true training distribution. This space is constructed using
Variational Autoencoders (VAEs), and navigated through their latent vector
space. We show that this space helps efficiently produce test inputs that can
reveal information about the robustness of DNNs when dealing with realistic
tests, opening the field to meaningful exploration through the space of highly
structured images
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
Recognizing arbitrary multi-character text in unconstrained natural
photographs is a hard problem. In this paper, we address an equally hard
sub-problem in this domain viz. recognizing arbitrary multi-digit numbers from
Street View imagery. Traditional approaches to solve this problem typically
separate out the localization, segmentation, and recognition steps. In this
paper we propose a unified approach that integrates these three steps via the
use of a deep convolutional neural network that operates directly on the image
pixels. We employ the DistBelief implementation of deep neural networks in
order to train large, distributed neural networks on high quality images. We
find that the performance of this approach increases with the depth of the
convolutional network, with the best performance occurring in the deepest
architecture we trained, with eleven hidden layers. We evaluate this approach
on the publicly available SVHN dataset and achieve over accuracy in
recognizing complete street numbers. We show that on a per-digit recognition
task, we improve upon the state-of-the-art, achieving accuracy. We
also evaluate this approach on an even more challenging dataset generated from
Street View imagery containing several tens of millions of street number
annotations and achieve over accuracy. To further explore the
applicability of the proposed system to broader text recognition tasks, we
apply it to synthetic distorted text from reCAPTCHA. reCAPTCHA is one of the
most secure reverse turing tests that uses distorted text to distinguish humans
from bots. We report a accuracy on the hardest category of reCAPTCHA.
Our evaluations on both tasks indicate that at specific operating thresholds,
the performance of the proposed system is comparable to, and in some cases
exceeds, that of human operators
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
Catastrophic forgetting is a problem faced by many machine learning models
and algorithms. When trained on one task, then trained on a second task, many
machine learning models "forget" how to perform the first task. This is widely
believed to be a serious problem for neural networks. Here, we investigate the
extent to which the catastrophic forgetting problem occurs for modern neural
networks, comparing both established and recent gradient-based training
algorithms and activation functions. We also examine the effect of the
relationship between the first task and the second task on catastrophic
forgetting. We find that it is always best to train using the dropout
algorithm--the dropout algorithm is consistently best at adapting to the new
task, remembering the old task, and has the best tradeoff curve between these
two extremes. We find that different tasks and relationships between tasks
result in very different rankings of activation function performance. This
suggests the choice of activation function should always be cross-validated
Maximum Entropy Linear Manifold for Learning Discriminative Low-dimensional Representation
Representation learning is currently a very hot topic in modern machine
learning, mostly due to the great success of the deep learning methods. In
particular low-dimensional representation which discriminates classes can not
only enhance the classification procedure, but also make it faster, while
contrary to the high-dimensional embeddings can be efficiently used for visual
based exploratory data analysis.
In this paper we propose Maximum Entropy Linear Manifold (MELM), a
multidimensional generalization of Multithreshold Entropy Linear Classifier
model which is able to find a low-dimensional linear data projection maximizing
discriminativeness of projected classes. As a result we obtain a linear
embedding which can be used for classification, class aware dimensionality
reduction and data visualization. MELM provides highly discriminative 2D
projections of the data which can be used as a method for constructing robust
classifiers.
We provide both empirical evaluation as well as some interesting theoretical
properties of our objective function such us scale and affine transformation
invariance, connections with PCA and bounding of the expected balanced accuracy
error.Comment: submitted to ECMLPKDD 201
On Lightweight Privacy-Preserving Collaborative Learning for IoT Objects
The Internet of Things (IoT) will be a main data generation infrastructure
for achieving better system intelligence. This paper considers the design and
implementation of a practical privacy-preserving collaborative learning scheme,
in which a curious learning coordinator trains a better machine learning model
based on the data samples contributed by a number of IoT objects, while the
confidentiality of the raw forms of the training data is protected against the
coordinator. Existing distributed machine learning and data encryption
approaches incur significant computation and communication overhead, rendering
them ill-suited for resource-constrained IoT objects. We study an approach that
applies independent Gaussian random projection at each IoT object to obfuscate
data and trains a deep neural network at the coordinator based on the projected
data from the IoT objects. This approach introduces light computation overhead
to the IoT objects and moves most workload to the coordinator that can have
sufficient computing resources. Although the independent projections performed
by the IoT objects address the potential collusion between the curious
coordinator and some compromised IoT objects, they significantly increase the
complexity of the projected data. In this paper, we leverage the superior
learning capability of deep learning in capturing sophisticated patterns to
maintain good learning performance. Extensive comparative evaluation shows that
this approach outperforms other lightweight approaches that apply additive
noisification for differential privacy and/or support vector machines for
learning in the applications with light data pattern complexities.Comment: 12 pages,IOTDI 201
On the Challenges of Physical Implementations of RBMs
Restricted Boltzmann machines (RBMs) are powerful machine learning models,
but learning and some kinds of inference in the model require sampling-based
approximations, which, in classical digital computers, are implemented using
expensive MCMC. Physical computation offers the opportunity to reduce the cost
of sampling by building physical systems whose natural dynamics correspond to
drawing samples from the desired RBM distribution. Such a system avoids the
burn-in and mixing cost of a Markov chain. However, hardware implementations of
this variety usually entail limitations such as low-precision and limited range
of the parameters and restrictions on the size and topology of the RBM. We
conduct software simulations to determine how harmful each of these
restrictions is. Our simulations are designed to reproduce aspects of the
D-Wave quantum computer, but the issues we investigate arise in most forms of
physical computation
Variational Deep Semantic Hashing for Text Documents
As the amount of textual data has been rapidly increasing over the past
decade, efficient similarity search methods have become a crucial component of
large-scale information retrieval systems. A popular strategy is to represent
original data samples by compact binary codes through hashing. A spectrum of
machine learning methods have been utilized, but they often lack expressiveness
and flexibility in modeling to learn effective representations. The recent
advances of deep learning in a wide range of applications has demonstrated its
capability to learn robust and powerful feature representations for complex
data. Especially, deep generative models naturally combine the expressiveness
of probabilistic generative models with the high capacity of deep neural
networks, which is very suitable for text modeling. However, little work has
leveraged the recent progress in deep learning for text hashing.
In this paper, we propose a series of novel deep document generative models
for text hashing. The first proposed model is unsupervised while the second one
is supervised by utilizing document labels/tags for hashing. The third model
further considers document-specific factors that affect the generation of
words. The probabilistic generative formulation of the proposed models provides
a principled framework for model extension, uncertainty estimation, simulation,
and interpretability. Based on variational inference and reparameterization,
the proposed models can be interpreted as encoder-decoder deep neural networks
and thus they are capable of learning complex nonlinear distributed
representations of the original documents. We conduct a comprehensive set of
experiments on four public testbeds. The experimental results have demonstrated
the effectiveness of the proposed supervised learning models for text hashing.Comment: 11 pages, 4 figure
Ruthenium/Iridium Ratios in the Cretaceous-tertiary Boundary Clay: Implications for Global Dispersal and Fractionation Within the Ejecta Cloud
Ruthenium (Ru) and iridium (Ir) are the least mobile platinum group elements (PGE's) within the Cretaceous-Tertiary (K-T) boundary clay (BC). The Ru/Ir ratio is, therefore, the most useful PGE interelement ratio for distinguishing terrestrial and extraterrestrial contributions to the BC. The Ru/Ir ratio of marine K-T sections (1.77 +/- 0.53) is statistically different from that of the continental sections (0.93 +/- 0.28). The marine Ru/Ir ratios are chondritic (C1 = 1.48 +/- 0.09), but the continental ratios are not. We discovered an inverse correlation of shocked quartz size (or distance from the impact site) and Ru/Ir ratio. This correlation may arise from the difference in Ru and Ir vaporization temperature and/or fractionation during condensation from the ejecta cloud. Postsedimentary alteration, remobilization, or terrestrial PGE input may be responsible for the Ru/Ir ratio variations within the groups of marine and continental sites studied. The marine ratios could also be attained if approximately 15 percent of the boundary metals were contributed by Deccan Trap emissions. However, volcanic emissions could not have been the principal source of the PGE's in the BC because mantle PGE ratios and abundances are inconsistent with those measured in the clay. The Ru/Ir values for pristine Tertiary mantle xenoliths (2.6 +/- 0.48), picrites (4.1 +/- 1.8), and Deccan Trap basalt (3.42 +/- 1.96) are all statistically distinct from those measured in the K-T BC
- …
