7,576 research outputs found

    Unified derivation of Bohmian methods and the incorporation of interference effects

    Full text link
    We present a unified derivation of Bohmian methods that serves as a common starting point for the derivative propagation method (DPM), Bohmian mechanics with complex action (BOMCA) and the zero-velocity complex action method (ZEVCA). The unified derivation begins with the ansatz ψ=eiS\psi=e^{\frac{iS}{\hbar}} where the action, SS, is taken to be complex and the quantum force is obtained by writing a hierarchy of equations of motion for the phase partial derivatives. We demonstrate how different choices of the trajectory velocity field yield different formulations such as DPM, BOMCA and ZEVCA. The new derivation is used for two purposes. First, it serves as a common basis for comparing the role of the quantum force in the DPM and BOMCA formulations. Second, we use the new derivation to show that superposing the contributions of real, crossing trajectories yields a nodal pattern essentially identical to that of the exact quantum wavefunction. The latter result suggests a promising new approach to deal with the challenging problem of nodes in Bohmian mechanics

    Gold Deposits of the CIS

    Get PDF

    Emerging Trends in Child Protective Work During the Progressive Era 1909-1929: Local Experience in a National Context

    Get PDF
    This historical analysis seeks to inform current debate in child welfare practice through analysis of the development of child protection work in the United States during the Progressive Era. Analysis of case records and social work debate suggests a shift occurred in the intervention strategy used by social workers in their approach to child protective work. Social workers shifted from a social control model to a casework intervention strategy in protective work. Case records from the Children\u27s Protective Society of Hennepin County in the 1920s depict a combination of both intervention strategies being utilized simultaneously

    Acetylene terminated matrix resins

    Get PDF
    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications

    Interference in Bohmian Mechanics with Complex Action

    Full text link
    In recent years, intensive effort has gone into developing numerical tools for exact quantum mechanical calculations that are based on Bohmian mechanics. As part of this effort we have recently developed as alternative formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex [JCP {125}, 231103 (2006)]. In the alternative formulation there is a significant reduction in the magnitude of the quantum force as compared with the conventional Bohmian formulation, at the price of propagating complex trajectories. In this paper we show that Bohmian mechanics with complex action is able to overcome the main computational limitation of conventional Bohmian methods -- the propagation of wavefunctions once nodes set in. In the vicinity of nodes, the quantum force in conventional Bohmian formulations exhibits rapid oscillations that pose severe difficulties for existing numerical schemes. We show that within complex Bohmian mechanics, multiple complex initial conditions can lead to the same real final position, allowing for the description of nodes as a sum of the contribution from two or more crossing trajectories. The idea is illustrated on the reflection amplitude from a one-dimensional Eckart barrier. We believe that trajectory crossing, although in contradiction to the conventional Bohmian trajectory interpretation, provides an important new tool for dealing with the nodal problem in Bohmian methods

    Semiclassical approximation with zero velocity trajectories

    Full text link
    We present a new semiclassical method that yields an approximation to the quantum mechanical wavefunction at a fixed, predetermined position. In the approach, a hierarchy of ODEs are solved along a trajectory with zero velocity. The new approximation is local, both literally and from a quantum mechanical point of view, in the sense that neighboring trajectories do not communicate with each other. The approach is readily extended to imaginary time propagation and is particularly useful for the calculation of quantities where only local information is required. We present two applications: the calculation of tunneling probabilities and the calculation of low energy eigenvalues. In both applications we obtain excellent agrement with the exact quantum mechanics, with a single trajectory propagation.Comment: 16 pages, 7 figure

    Complex trajectory method in time-dependent WKB

    Full text link
    We present a significant improvement to a time-dependent WKB (TDWKB) formulation developed by Boiron and Lombardi [JCP {\bf108}, 3431 (1998)] in which the TDWKB equations are solved along classical trajectories that propagate in the complex plane. Boiron and Lombardi showed that the method gives very good agreement with the exact quantum mechanical result as long as the wavefunction does not exhibit interference effects such as oscillations and nodes. In this paper we show that this limitation can be overcome by superposing the contributions of crossing trajectories. We also demonstrate that the approximation improves when incorporating higher order terms in the expansion. These improvements could make the TDWKB formulation a competitive alternative to current time-dependent semiclassical methods
    corecore