31 research outputs found

    Inhibition of Osteoclastogenesis by Mechanically Loaded Osteocytes: Involvement of MEPE

    Get PDF
    In regions of high bone loading, the mechanoresponsive osteocytes inhibit osteoclastic bone resorption by producing signaling molecules. One possible candidate is matrix extracellular phosphoglycoprotein (MEPE) because acidic serine- and aspartate-rich MEPE-associated motif peptides upregulate osteoprotegerin (OPG) gene expression, a negative regulator of osteoclastogenesis. These peptides are cleaved from MEPE when relatively more MEPE than PHEX (phosphate-regulating gene with homology to endopeptidases on the X chromosome) is present. We investigated whether mechanical loading of osteocytes affects osteocyte-stimulated osteoclastogenesis by involvement of MEPE. MLO-Y4 osteocytes were mechanically loaded by 1-h pulsating fluid flow (PFF; 0.7 ± 0.3 Pa, 5 Hz) or kept under static control conditions. Recombinant MEPE (0.05, 0.5, or 5 μg/ml) was added to some static cultures. Mouse bone marrow cells were seeded on top of the osteocytes to determine osteoclastogenesis. Gene expression of MEPE, PHEX, receptor activator of nuclear factor kappa-B ligand (RANKL), and OPG by osteocytes was determined after PFF. Osteocytes supported osteoclast formation under static control conditions. Both PFF and recombinant MEPE inhibited osteocyte-stimulated osteoclastogenesis. PFF upregulated MEPE gene expression by 2.5-fold, but not PHEX expression. PFF decreased the RANKL/OPG ratio at 1-h PFF treatment. Our data suggest that mechanical loading induces changes in gene expression by osteocytes, which likely contributes to the inhibition of osteoclastogenesis after mechanical loading of bone. Because mechanical loading upregulated gene expression of MEPE but not PHEX, possibly resulting in the upregulation of OPG gene expression, we speculate that MEPE is a soluble factor involved in the inhibition of osteoclastogenesis by osteocytes

    Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium

    Get PDF
    Formation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey's fibers of the periodontal ligament (PDL). However, little is known about the regulatory morphogens that control differentiation and function of these progenitor cells, as well as the progenitor cells involved in crown and root formation. We investigated the role of bone morphogenetic protein-2 (Bmp2) in these processes by the conditional removal of the Bmp2 gene using the Sp7-Cre-EGFP mouse model. Sp7-Cre-EGFP first becomes active at E18 in the first molar, with robust Cre activity at postnatal day 0 (P0), followed by Cre activity in the second molar, which occurs after P0. There is robust Cre activity in the periodontium and third molars by 2 weeks of age. When the Bmp2 gene is removed from Sp7(+) (Osterix(+)) cells, major defects are noted in root, cellular cementum and periodontium formation. First, there are major cell autonomous defects in root-odontoblast terminal differentiation. Second, there are major alterations in formation of the PDLs and cellular cementum, correlated with decreased nuclear factor IC (Nfic), periostin and α-SMA(+) cells. Third, there is a failure to produce vascular endothelial growth factor A (VEGF-A) in the periodontium and the pulp leading to decreased formation of the microvascular and associated candidate stem cells in the Bmp2-cKO(Sp7-Cre-EGFP). Fourth, ameloblast function and enamel formation are indirectly altered in the Bmp2-cKO(Sp7-Cre-EGFP). These data demonstrate that the Bmp2 gene has complex roles in postnatal tooth development and periodontium formation

    Central Role of Pyrophosphate in Acellular Cementum Formation

    Get PDF
    Background: Inorganic pyrophosphate (PPi) is a physiologic inhibitor of hydroxyapatite mineral precipitation involved in regulating mineralized tissue development and pathologic calcification. Local levels of PPi are controlled by antagonistic functions of factors that decrease PPi and promote mineralization (tissue-nonspecific alkaline phosphatase, Alpl/TNAP), and those that increase local PPi and restrict mineralization (progressive ankylosis protein, ANK; ectonucleotide pyrophosphatase phosphodiesterase-1, NPP1). The cementum enveloping the tooth root is essential for tooth function by providing attachment to the surrounding bone via the nonmineralized periodontal ligament. At present, the developmental regulation of cementum remains poorly understood, hampering efforts for regeneration. To elucidate the role of PPi in cementum formation, we analyzed root development in knock-out ((-/-)) mice featuring PPi dysregulation. Results: Excess PPi in the Alpl(-/-) mouse inhibited cementum formation, causing root detachment consistent with premature tooth loss in the human condition hypophosphatasia, though cementoblast phenotype was unperturbed. Deficient PPi in both Ank and Enpp1(-/-) mice significantly increased cementum apposition and overall thickness more than 12-fold vs. controls, while dentin and cellular cementum were unaltered. Though PPi regulators are widely expressed, cementoblasts selectively expressed greater ANK and NPP1 along the root surface, and dramatically increased ANK or NPP1 in models of reduced PPi output, in compensatory fashion. In vitro mechanistic studies confirmed that under low PPi mineralizing conditions, cementoblasts increased Ank (5-fold) and Enpp1 (20-fold), while increasing PPi inhibited mineralization and associated increases in Ank and Enpp1 mRNA. Conclusions: Results from these studies demonstrate a novel developmental regulation of acellular cementum, wherein cementoblasts tune cementogenesis by modulating local levels of PPi, directing and regulating mineral apposition. These findings underscore developmental differences in acellular versus cellular cementum, and suggest new approaches for cementum regeneration

    Runx2, Osx, and Dspp in Tooth Development

    No full text
    The transcription factors Runx2 and Osx are necessary for osteoblast and odontoblast differentiation, while Dspp is important for odontoblast differentiation. The relationship among Runx2, Osx, and Dspp during tooth and craniofacial bone development remains unknown. In this study, we hypothesized that the roles of Runx2 and Osx in the regulation of osteoblast and odontoblast lineages may be independent of one another. The results showed that Runx2 expression overlapped with Osx in dental and osteogenic mesenchyme from E12 to E16. At the later stages, from E18 to PN14, Runx2 and Osx expressions remained intense in alveolar bone osteoblasts. However, Runx2 expression was down-regulated, whereas Osx expression was clearly seen in odontoblasts. At later stages, Dspp transcription was weakly present in osteoblasts, but strong in odontoblasts where Osx was highly expressed. In mouse odontoblast-like cells, Osx overexpression increased Dspp transcription. Analysis of these data suggests differential biological functions of Runx2, Osx, and Dspp during odontogenesis and osteogenesis. Abbreviations: E, embryonic day; PN, post-natal day; Dspp, dentin sialophosphoprotein; Osx, Osterix

    Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells.

    No full text
    We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO(ob)) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO(ob) mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKO(ob) osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA(+) MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells

    Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells.

    No full text
    We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO(ob)) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO(ob) mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKO(ob) osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA(+) MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells
    corecore