1,336 research outputs found
Impact of inter-correlated initial binary parameters on double black hole and neutron star mergers
The distributions of the initial main-sequence binary parameters are one of
the key ingredients in obtaining evolutionary predictions for compact binary
(BH-BH / BH-NS / NS-NS) merger rates. Until now, such calculations were done
under the assumption that initial binary parameter distributions were
independent. Here, we implement empirically derived inter-correlated
distributions of initial binary parameters primary mass (M1), mass ratio (q),
orbital period (P), and eccentricity (e). Unexpectedly, the introduction of
inter-correlated initial binary parameters leads to only a small decrease in
the predicted merger rates by a factor of 2 3 relative to the previously
used non-correlated initial distributions. The formation of compact object
mergers in the isolated classical binary evolution favors initial binaries with
stars of comparable masses (q = 0.5 1) at intermediate orbital periods (log
P (days) = 2 4). New distributions slightly shift the mass ratios towards
smaller values with respect to the previously used flat q distribution, which
is the dominant effect decreasing the rates. New orbital periods only
negligibly increase the number of progenitors. Additionally, we discuss the
uncertainty of merger rate predictions associated with possible variations of
the massive-star initial mass function (IMF). We argue that evolutionary
calculations should be normalized to a star formation rate (SFR) that is
obtained from the observed amount of UV light at wavelength 1500{\AA} (SFR
indicator). In this case, contrary to recent reports, the uncertainty of the
IMF does not affect the rates by more than a factor of 2. Any change to the IMF
slope for massive stars requires a change of SFR in a way that counteracts the
impact of IMF variations on the merger rates. In contrast, we suggest that the
uncertainty in cosmic SFR at low metallicity can be a significant factor at
play.Comment: accepted for publication in A&
Detection of faint companions through stochastic speckle discrimination
We propose a new post-processing technique for the detection of faint
companions from a sequence of adaptive optics corrected short exposures. The
algorithm exploits the difference in shape between the on-axis and off-axis
irradiance distributions and it does not require the signal to be above the
noise level. We show that the method is particularly useful in dealing with
static speckles. Its application to real and simulated data gives excellent
results in the low-signal regime where it outperforms the standard approach of
computing signal-to-noise ratio on one long exposure. We also show that
accurate noise estimation in adaptive optics images of close companions is
rendered impossible due to the presence of static speckles. This new method
provides means of reliable estimation of the confidence intervals for the
detection hypothesis.Comment: accepted for publication in Ap
CASTOR: The ALICE forward detector for identification of Centauros and Strangelets in Nucleus-Nucleus Collisions at the LHC
The physics motivation for a very forward detector for the ALICE heavy ion
experiment at the CERN LHC is discussed. A phenomenological model describing
the formation and decay of a Centauro fireball in nucleus-nucleus collisions is
presented. The CASTOR detector which is aimed to measure the hadronic and
photonic content of an interaction and to identify deeply penetrating objects
in the very forward, baryon-rich phase space 5.6 < eta < 7.2 in an
event-by-event mode is described. Results of simulations of the expected
response of the calorimeter, and in particular to the passage of strangelets,
are presented.Comment: Presented at XXVIII Int. Symp. on Multiparticle Dynamics, Delphi,
6-11 Sept. 1998. 9 pages, 11 figure
Temporal variability and statistics of the Strehl ratio in adaptive-optics images
We have investigated the temporal variability and statistics of the
"instantaneous" Strehl ratio. The observations were carried out with the 3.63-m
AEOS telescope equipped with a high-order adaptive optics system. In this paper
Strehl ratio is defined as the peak intensity of a single short exposure. We
have also studied the behaviour of the phase variance computed on the
reconstructed wavefronts. We tested the Marechal approximation and used it to
explain the observed negative skewness of the Strehl ratio distribution. The
estimate of the phase variance is shown to fit a three-parameter Gamma
distribution model. We show that simple scaling of the reconstructed wavefronts
has a large impact on the shape of the Strehl ratio distribution.Comment: submitted to PAS
Speckle noise and dynamic range in coronagraphic images
This paper is concerned with the theoretical properties of high contrast
coronagraphic images in the context of exoplanet searches. We derive and
analyze the statistical properties of the residual starlight in coronagraphic
images, and describe the effect of a coronagraph on the speckle and photon
noise. Current observations with coronagraphic instruments have shown that the
main limitations to high contrast imaging are due to residual quasi-static
speckles. We tackle this problem in this paper, and propose a generalization of
our statistical model to include the description of static, quasi-static and
fast residual atmospheric speckles. The results provide insight into the
effects on the dynamic range of wavefront control, coronagraphy, active speckle
reduction, and differential speckle calibration. The study is focused on
ground-based imaging with extreme adaptive optics, but the approach is general
enough to be applicable to space, with different parameters.Comment: 31 pages, 18 figure
5,6-dehydro[3.3]Paracyclophane: Bridged benzobarrelene formation by intramolecular trapping of a novel aryne
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21925/1/0000332.pd
Formation of Centauro and Strangelets in Nucleus-Nucleus Collisions at the LHC and their Identification by the ALICE Experiment
We present a phenomenological model which describes the formation of a
Centauro fireball in nucleus-nucleus interactions in the upper atmosphere and
at the LHC, and its decay to non-strange baryons and Strangelets. We describe
the CASTOR detector for the ALICE experiment at the LHC. CASTOR will probe, in
an event-by-event mode, the very forward, baryon-rich phase space 5.6 < \eta <
7.2 in 5.5 A TeV central Pb + Pb collisions. We present results of simulations
for the response of the CASTOR calorimeter, and in particular to the traversal
of Strangelets.Comment: 4 pages, 4 figures, to appear in the proceedings of the 26th ICR
CASTOR: Centauro and Strange Object Research in nucleus-nucleus collisions at LHC
We describe the CASTOR detector designed to probe the very forward,
baryon-rich rapidity region in nucleus-nucleus collisions at the LHC. We
present a phenomenological model describing the formation of a QGP fireball in
a high baryochemical potential environment, and its subsequent decay into
baryons and strangelets. The model explains Centauros and the long-penetrating
component and makes predictions for the LHC.
Simulations of Centauro-type events were done. To study the response of the
apparatus to new effects different exotic species (DCC, Centauros, strangelets
etc.) were passed through the deep calorimeter. The energy deposition pattern
in the calorimeter appears to be a new clear signature of the QGP.Comment: Talk given by E. Gladysz-Dziadus for the CASTOR group, Intern.
Workshop on Nuclear Theory, 10-15 June, 2002, Bulgaria, Rila Mountains, 15
pages, 14 figure
Sustainable engineering master module - Insights from three cohorts of European engineering team
Mobility and transnational migration are current social developments among the population of the European Union. These developments in both society-at-large and companies, linked to the challenges of sustainability, lead to new requirements for working in the European Union. Teaching and learning in higher education needs to adapt to these requirements. As a result, new and innovative teaching and learning practices in higher education should provide competencies for transnational teamwork in the curriculum of tomorrow's engineers in order to ensure their competitiveness in the job market. A transnational project-oriented teaching and learning framework, which provides the future key competencies for young engineers was implemented in the course European Engineering Team (EET). Engineering students from four countries participated in a new project-based course that focused on the development of innovative and sustainable products and opportunities. The goal of this paper is to present results and lessons learnt from three cohorts of EET
- …