41 research outputs found
Side Chain Hydrophobicity Modulates Therapeutic Activity and Membrane Selectivity of Antimicrobial Peptide Mastoparan-X
The discovery of new anti-infective compounds is stagnating and multi-resistant bacteria continue to emerge, threatening to end the "antibiotic era". Antimicrobial peptides (AMPs) and lipo-peptides such as daptomycin offer themselves as a new potential class of antibiotics; however, further optimization is needed if AMPs are to find broad use as antibiotics. In the present work, eight analogues of mastoparan-X (MPX) were investigated, having side chain modifications in position 1, 8 and 14 to modulate peptide hydrophobicity. The self-association properties of the peptides were characterized, and the peptide-membrane interactions in model membranes were compared with the bactericidal and haemolytic properties. Alanine substitution at position 1 and 14 resulted in higher target selectivity (red blood cells versus bacteria), but also decreased bactericidal potency. For these analogues, the gain in target selectivity correlated to biophysical parameters showing an increased effective charge and reduction in the partitioning coefficient for membrane insertion. Introduction of an unnatural amino acid, with an octyl side chain by amino acid substitution, at positions 1, 8 and 14 resulted in increased bactericidal potency at the expense of radically reduced membrane target selectivity. Overall, optimized membrane selectivity or bactericidal potency was achieved by changes in side chain hydrophobicity of MPX. However, enhanced potency was achieved at the expense of selectivity and vice versa in all cases
Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera
Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest
economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it
has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative
reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform
gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference
gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the
most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were
investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C
irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using
geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide
comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created
using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference
genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment,
EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine
samples can contribute for accurate gene expression quantification in forthcoming studiesinfo:eu-repo/semantics/publishedVersio
RNA-seq analysis in plant–fungus interactions
Many fungi are pathogens that infect important food and plantation crops, reducing both yield and quality of food products. Understanding plant–fungus interactions is crucial as knowledge in this area is required to formulate sustainable strategies to improve plant health and crop productivity. High-throughput RNA-sequencing (RNA-seq) enables researchers to gain insights of the mixed and multispecies transcriptomes in plant–fungus interactions. Interpretation of huge data generated by RNA-seq has led to new insights in this area, facilitating a system approach in unraveling interactions between plant hosts and fungal pathogens. In this review, the application and challenges of RNA-seq analysis in plant–fungus interactions will be discussed
Johannes Ficker : Luthers Vorlesung über der Hebräerbrief 1517-18. Dieterich'sche Verlagsbuchhandlung, Leipzig 1929
Gjetting Simon J. R. Johannes Ficker : Luthers Vorlesung über der Hebräerbrief 1517-18. Dieterich'sche Verlagsbuchhandlung, Leipzig 1929. In: Revue d'histoire et de philosophie religieuses, 10e année n°2, Mars-avril 1930. pp. 203-204
Johannes Ficker : Luthers Vorlesung über der Hebräerbrief 1517-18. Dieterich'sche Verlagsbuchhandlung, Leipzig 1929
Gjetting Simon J. R. Johannes Ficker : Luthers Vorlesung über der Hebräerbrief 1517-18. Dieterich'sche Verlagsbuchhandlung, Leipzig 1929. In: Revue d'histoire et de philosophie religieuses, 10e année n°2, Mars-avril 1930. pp. 203-204
The retinoblastoma protein modulates expression of genes coding for diverse classes of proteins including components of the extracellular matrix
The product of the retinoblastoma susceptibility gene, pRb, is a negative regulator of cell growth. It functions by regulating the activity of transcription factors. Rb represses some genes by sequestering or inactivating the positive transcription factor E2F and seems to activate some others by interacting with factors like Sp1 or ATF-2. However, there are only a few examples of genes which are positively regulated by pRb. In order to find out if there are common mechanisms for promoter regulation by pRb, we were interested to identify more genes which are either stimulated or repressed by pRb. Using the method of differential display (DDRT-PCR) in combination with nuclear run-on analyses we were able to detect a number of genes which are upregulated by ectopic expression of the Rb gene in Rb-deficient mammary carcinoma cells. We could demonstrate not only stimulation of the endogenous mutant Rb gene but also positive regulation of genes coding for diverse classes of proteins, including the endothelial growth regulator endothelin-1 and the proteoglycans versican and PG40. As a second approach, we investigated gene expression in cell lines established from Rb deficient heterozygous and homozygous knockout mouse embryos and normal mice. We have identified several genes the expression of which correlates positively or negatively with the presence of Rb. These data provide further evidence for pRb being a master regulator of a complex network of gene activities defining the difference between dividing and resting or differentiated cells
Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood–brain barrier and glioma cells
Jonas Bruun,1 Trine B Larsen,1 Rasmus I Jølck,1 Rasmus Eliasen,1 René Holm,2 Torben Gjetting,1 Thomas L Andresen11Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark; 2H Lundbeck A/S, Biologics and Pharmaceutical Science, Valby, DenmarkAbstract: Clinical applications of siRNA for treating disorders in the central nervous system require development of systemic stable, safe, and effective delivery vehicles that are able to cross the impermeable blood–brain barrier (BBB). Engineering nanocarriers with low cellular interaction during systemic circulation, but with high uptake in targeted cells, is a great challenge and is further complicated by the BBB. As a first step in obtaining such a delivery system, this study aims at designing a lipid nanoparticle (LNP) able to efficiently encapsulate siRNA by a combination of titratable cationic lipids. The targeted delivery is obtained through the design of a two-stage system where the first step is conjugation of angiopep to the surface of the LNP for targeting the low-density lipoprotein receptor-related protein-1 expressed on the BBB. Second, the positively charged LNPs are masked with a negatively charged PEGylated (poly(ethylene glycol)) cleavable lipopeptide, which contains a recognition sequence for matrix metalloproteinases (MMPs), a class of enzymes often expressed in the tumor microenvironment and inflammatory BBB conditions. Proteolytic cleavage induces PEG release, including the release of four glutamic acid residues, providing a charge switch that triggers a shift of the LNP charge from weakly negative to positive, thus favoring cellular endocytosis and release of siRNA for high silencing efficiency. This work describes the development of this two-stage nanocarrier-system and evaluates the performance in brain endothelial and glioblastoma cells with respect to uptake and gene silencing efficiency. The ability of activation by MMP-triggered dePEGylation and charge shift is demonstrated to substantially increase the uptake and the silencing efficiency of the LNPs.Keywords: matrix metalloproteinase, cleavable PEG-lipid, gene therapy, BBB, angiopep, nanocarrie
Do 14-3-3 proteins and plasma membrane H<sup>+</sup>-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus?
14-3-3 proteins form a family of highly conserved proteins with central roles in many eukaryotic signalling networks. In plants, they bind to and activate the plasma membrane