430 research outputs found

    Two-Electron Photon Emission From Metallic Quantum Wells

    Full text link
    Unusual emission of visible light is observed in scanning tunneling microscopy of the quantum well system Na on Cu(111). Photons are emitted at energies exceeding the energy of the tunneling electrons. Model calculations of two-electron processes which lead to quantum well transitions reproduce the experimental fluorescence spectra, the quantum yield, and the power-law variation of the intensity with the excitation current.Comment: revised version, as published; 4 pages, 3 figure

    Multistate resistive switching in silver nanoparticle films.

    Get PDF
    Resistive switching devices have garnered significant consideration for their potential use in nanoelectronics and non-volatile memory applications. Here we investigate the nonlinear current-voltage behavior and resistive switching properties of composite nanoparticle films comprising a large collective of metal-insulator-metal junctions. Silver nanoparticles prepared via the polyol process and coated with an insulating polymer layer of tetraethylene glycol were deposited onto silicon oxide substrates. Activation required a forming step achieved through application of a bias voltage. Once activated, the nanoparticle films exhibited controllable resistive switching between multiple discrete low resistance states that depended on operational parameters including the applied bias voltage, temperature and sweep frequency. The films' resistance switching behavior is shown here to be the result of nanofilament formation due to formative electromigration effects. Because of their tunable and distinct resistance states, scalability and ease of fabrication, nanoparticle films have a potential place in memory technology as resistive random access memory cells

    Folding of a donor–acceptor polyrotaxane by using noncovalent bonding interactions

    Get PDF
    Mechanically interlocked compounds, such as bistable catenanes and bistable rotaxanes, have been used to bring about actuation in nanoelectromechanical systems (NEMS) and molecular electronic devices (MEDs). The elaboration of the structural features of such rotaxanes into macromolecular materials might allow the utilization of molecular motion to impact their bulk properties. We report here the synthesis and characterization of polymers that contain π electron-donating 1,5-dioxynaphthalene (DNP) units encircled by cyclobis(paraquat-p-phenylene) (CBPQT4+), a π electron-accepting tetracationic cyclophane, synthesized by using the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The polyrotaxanes adopt a well defined “folded” secondary structure by virtue of the judicious design of two DNP-containing monomers with different binding affinities for CBPQT4+. This efficient approach to the preparation of polyrotaxanes, taken alongside the initial investigations of their chemical properties, sets the stage for the preparation of a previously undescribed class of macromolecular architectures

    Atomic scale engines: Cars and wheels

    Full text link
    We introduce a new approach to build microscopic engines on the atomic scale that move translationally or rotationally and can perform useful functions such as pulling of a cargo. Characteristic of these engines is the possibility to determine dynamically the directionality of the motion. The approach is based on the transformation of the fed energy to directed motion through a dynamical competition between the intrinsic lengths of the moving object and the supporting carrier.Comment: 4 pages, 3 figures (2 in color), Phys. Rev. Lett. (in print

    Current-Driven Conformational Changes, Charging and Negative Differential Resistance in Molecular Wires

    Full text link
    We introduce a theoretical approach based on scattering theory and total energy methods that treats transport non-linearities, conformational changes and charging effects in molecular wires in a unified way. We apply this approach to molecular wires consisting of chain molecules with different electronic and structural properties bonded to metal contacts. We show that non-linear transport in all of these systems can be understood in terms of a single physical mechanism and predict that negative differential resistance at high bias should be a generic property of such molecular wires.Comment: 9 pages, 4 figure

    Light emission from a scanning tunneling microscope: Fully retarded calculation

    Full text link
    The light emission rate from a scanning tunneling microscope (STM) scanning a noble metal surface is calculated taking retardation effects into account. As in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev. B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric properties of tip and sample are described by experimentally measured dielectric functions. The calculations are based on exact diffraction theory through the vector equivalent of the Kirchoff integral. The present results are qualitatively similar to those of the non-retarded calculations. The light emission spectra have pronounced resonance peaks due to the formation of a tip-induced plasmon mode localized to the cavity between the tip and the sample. At a quantitative level, the effects of retardation are rather small as long as the sample material is Au or Cu, and the tip consists of W or Ir. However, for Ag samples, in which the resistive losses are smaller, the inclusion of retardation effects in the calculation leads to larger changes: the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These changes improve the agreement with experiment. For a Ag sample and an Ir tip, the quantum efficiency is \approx 104^{-4} emitted photons in the visible frequency range per tunneling electron. A study of the energy dissipation into the tip and sample shows that in total about 1 % of the electrons undergo inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear in Phys. Rev. B (15 October 1998

    Quantum Conductance in Semimetallic Bismuth Nanocontacts

    Full text link
    Electronic transport properties of bismuth nanocontacts are analyzed by means of a low temperature scanning tunneling microscope. The subquantum steps observed in the conductance versus elongation curves give evidence of atomic rearrangements in the contact. The underlying quantum nature of the conductance reveals itself through peaks in the conductance histograms. The shape of the conductance curves at 77 K is well described by a simple gliding mechanism for the contact evolution during elongation. The strikingly different behaviour at 4 K suggests a charge carrier transition from light to heavy ones as the contact cross section becomes sufficiently small.Comment: 5 pages including 4 figures. Accepted for publication in Phys. Rev. Let

    ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a C_{60} device

    Get PDF
    We present an {\it ab initio} analysis of electron conduction through a C60C_{60} molecular device. Charge transfer from the device electrodes to the molecular region is found to play a crucial role in aligning the lowest unoccupied molecular orbital (LUMO) of the C60C_{60} to the Fermi level of the electrodes. This alignment induces a substantial device conductance of 2.2×(2e2/h)\sim 2.2 \times (2e^2/h). A gate potential can inhibit charge transfer and introduce a conductance gap near EFE_F, changing the current-voltage characteristics from metallic to semi-conducting, thereby producing a field effect molecular current switch

    Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope

    Full text link
    We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50-300 kΩ\Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltages. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory.Comment: 4 pages, REVTeX, submitted to PR

    Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis.

    Get PDF
    The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy
    corecore