1,638 research outputs found

    Magnetically driven accretion in protoplanetary discs

    Full text link
    We characterize magnetically driven accretion at radii between 1 au and 100 au in protoplanetary discs, using a series of local non-ideal magnetohydrodynamic (MHD) simulations. The simulations assume a Minimum Mass Solar Nebula (MMSN) disc that is threaded by a net vertical magnetic field of specified strength. Confirming previous results, we find that the Hall effect has only a modest impact on accretion at 30 au, and essentially none at 100 au. At 1-10 au the Hall effect introduces a pronounced bi-modality in the accretion process, with vertical magnetic fields aligned to the disc rotation supporting a strong laminar Maxwell stress that is absent if the field is anti-aligned. In the anti-aligned case, we instead find evidence for bursts of turbulent stress at 5-10 au, which we tentatively identify with the non-axisymmetric Hall-shear instability. The presence or absence of these bursts depends upon the details of the adopted chemical model, which suggests that appreciable regions of actual protoplanetary discs might lie close to the borderline between laminar and turbulent behaviour. Given the number of important control parameters that have already been identified in MHD models, quantitative predictions for disc structure in terms of only radius and accretion rate appear to be difficult. Instead, we identify robust qualitative tests of magnetically driven accretion. These include the presence of turbulence in the outer disc, independent of the orientation of the vertical magnetic fields, and a Hall-mediated bi-modality in turbulent properties extending from the region of thermal ionization to 10 au.Comment: accepted to MNRAS after very minor revision

    Principal aspects of investigations into fluidised carbonisation undertaken at the Marienau Experimental Station

    Get PDF
    IN 1948, CERCHAR, (the Centre d'Etudes et de Recherches des Charbonnages de France), started investigations on the application of fluidisation to the carbonisation of coal-fines. Preliminary investigations led to the construction of a 100 g/hr capacity fluidiser and subsequently a pilot plant having a capacity of 1 ton/hr was jointly set up by CERCHAR and IRSID) (Institut de Recherches de la Siderurgie, de France), at Marienau in the Lorraine coal fields. The present paper describes the experiments carried out with this pilot plant

    Salutation Angelique

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1629/thumbnail.jp

    Noise-induced behaviors in neural mean field dynamics

    Full text link
    The collective behavior of cortical neurons is strongly affected by the presence of noise at the level of individual cells. In order to study these phenomena in large-scale assemblies of neurons, we consider networks of firing-rate neurons with linear intrinsic dynamics and nonlinear coupling, belonging to a few types of cell populations and receiving noisy currents. Asymptotic equations as the number of neurons tends to infinity (mean field equations) are rigorously derived based on a probabilistic approach. These equations are implicit on the probability distribution of the solutions which generally makes their direct analysis difficult. However, in our case, the solutions are Gaussian, and their moments satisfy a closed system of nonlinear ordinary differential equations (ODEs), which are much easier to study than the original stochastic network equations, and the statistics of the empirical process uniformly converge towards the solutions of these ODEs. Based on this description, we analytically and numerically study the influence of noise on the collective behaviors, and compare these asymptotic regimes to simulations of the network. We observe that the mean field equations provide an accurate description of the solutions of the network equations for network sizes as small as a few hundreds of neurons. In particular, we observe that the level of noise in the system qualitatively modifies its collective behavior, producing for instance synchronized oscillations of the whole network, desynchronization of oscillating regimes, and stabilization or destabilization of stationary solutions. These results shed a new light on the role of noise in shaping collective dynamics of neurons, and gives us clues for understanding similar phenomena observed in biological networks

    Tunable high-index photonic glasses

    Full text link
    Materials with extreme photonic properties such as maximum diffuse reflectance, high albedo, or tunable band gaps are essential in many current and future photonic devices and coatings. While photonic crystals, periodic anisotropic structures, are well established, their disordered counterparts, photonic glasses (PGs), are less understood despite their most interesting isotropic photonic properties. Here, we introduce a controlled high index model PG system. It is made of monodisperse spherical TiO2_2 colloids to exploit strongly resonant Mie scattering for optimal turbidity. We report spectrally resolved combined measurements of turbidity and light energy velocity from large monolithic crack-free samples. This material class reveals pronounced resonances enabled by the possibility to tune both the refractive index of the extremely low polydisperse constituents and their radius. All our results are rationalized by a model based on the energy coherent potential approximation, which is free of any fitting parameter. Surprisingly good quantitative agreement is found even at high index and elevated packing fraction. This class of PGs may be the key to optimized tunable photonic materials and also central to understand fundamental questions such as isotropic structural colors, random lasing or strong light localization in 3D.Comment: Main text: 8 pages, 4 figures; Supporting Information: 5 pages, 5 figure

    Cloud optical thickness and liquid water path – does the <i>k</i> coefficient vary with droplet concentration?

    Get PDF
    Cloud radiative transfer calculations in general circulation models involve a link between cloud microphysical and optical properties. Indeed, the liquid water content expresses as a function of the mean volume droplet radius, while the light extinction is a function of their mean surface radius. There is a small difference between these two parameters because of the droplet spectrum width. This issue has been addressed by introducing an empirical multiplying correction factor to the droplet concentration. Analysis of in situ sampled data, however, revealed that the correction factor decreases when the concentration increases, hence partially mitigating the aerosol indirect effect. <br><br> Five field experiments are reanalyzed here, in which standard and upgraded versions of the droplet spectrometer were used to document shallow cumulus and stratocumulus topped boundary layers. They suggest that the standard probe noticeably underestimates the correction factor compared to the upgraded versions. The analysis is further refined to demonstrate that the value of the correction factor derived by averaging values calculated locally along the flight path overestimates the value derived from liquid water path and optical thickness of a cloudy column, and that there is no detectable relationship between the correction factor and the droplet concentration. It is also shown that the droplet concentration dilution by entrainment-mixing after CCN activation is significantly stronger in shallow cumuli than in stratocumulus layers. These various effects are finally combined to produce the today best estimate of the correction factor to use in general circulation models

    Screening process for activity determination of conductive oxide electrodes for organic oxidation

    Get PDF
    A modified method for the calculation of the normalized faradaic charge (q fN) is proposed. The method involves the simulation of an oxidation process, by cyclic voltammetry, by employing potentials in the oxygen evolution reaction region. The method is applicable to organic species whose oxidation is not manifested by a defined oxidation peak at conductive oxide electrodes. The variation of q fN for electrodes of nominal composition Ti/RuX Sn1-X O2 (x = 0.3, 0.2 and 0.1), Ti/Ir0.3Ti0.7O2 and Ti/Ru0.3Ti0.7O2 in the presence of various concentrations of formaldehyde was analyzed. It was observed that electrodes containing SnO2 are the most active for formaldehyde oxidation. Subsequently, in order to test the validity of the proposed model, galvanostatic electrolyses (40 mA cm-2) of two different formaldehyde concentrations (0.10 and 0.01 mol dm-3) were performed. The results are in agreement with the proposed model and indicate that this new method can be used to determine the relative activity of conductive oxide electrodes. In agreement with previous studies, it can be concluded that not only the nature of the electrode material, but also the organic species in solution and its concentration are important factors to be considered in the oxidation of organic compounds.Um método modificado para o cálculo da carga faradaica normalizada (q fN) é proposto. O método envolve a simulação de um processo de oxidação, por voltametria cíclica, empregando potenciais na região da reação de desprendimento de oxigênio (RDO). Este método é aplicável a espécies orgânicas, cuja oxidação não é manifestada por um pico de oxidação definido em eletrodos de óxidos condutores. A variação de q fN para eletrodos de composição nominal Ti/RuX Sn1-X O2 (x = 0,3; 0,2 e 0,1), Ti/Ir0,3Ti0,7O2 e Ti/Ru0,3Ti0,7O2, na presença de diferentes concentrações de formaldeído foi investigada. Foi observado que eletrodos contendo SnO2 são os mais ativos frente à oxidação de formaldeído. Subseqüentemente, para investigar a aplicabilidade do modelo proposto, eletrólises galvanostáticas (40 mA cm-2) de formaldeído foram efetuadas em duas concentrações distintas (0,10 e 0,01 mol dm-3). Os resultados estão de acordo com o modelo proposto e indicam que este novo método pode ser usado para determinar a atividade relativa de eletrodos de óxido. De acordo com trabalhos prévios, pode ser concluído que não somente a natureza do material eletródico, mas também a espécie orgânica em solução e a sua concentração são fatores importantes a serem considerados na oxidação de espécies orgânicas.FAPES

    Resonant Metalenses for Breaking the Diffraction Barrier

    Full text link
    We introduce the resonant metalens, a cluster of coupled subwavelength resonators. Dispersion allows the conversion of subwavelength wavefields into temporal signatures while the Purcell effect permits an efficient radiation of this information in the far-field. The study of an array of resonant wires using microwaves provides a physical understanding of the underlying mechanism. We experimentally demonstrate imaging and focusing from the far-field with resolutions far below the diffraction limit. This concept is realizable at any frequency where subwavelength resonators can be designed.Comment: 4 pages, 3 figure
    corecore