576 research outputs found

    Impact of dead zones on the response of a hadron calorimeter with projective and non-projective geometry

    Full text link
    The aim of this study is to find an optimal mechanical design of the hadronic calorimeter for SiD detector which takes into account engineering as well as physics requirements. The study focuses on the crack effects between two modules for various barrel mechanical design on calorimeter response. The impact of different size of the supporting stringers and dead areas in an active calorimeter layer along the module boundary has been studied for single pions and muons. The emphasis has been put on the comparison of the projective and non-projective barrel geometry for SiD hadronic calorimeter.Comment: 12 pages, 8 figure

    Asymptotic Conditional Distribution of Exceedance Counts: Fragility Index with Different Margins

    Full text link
    Let X=(X1,...,Xd)\bm X=(X_1,...,X_d) be a random vector, whose components are not necessarily independent nor are they required to have identical distribution functions F1,...,FdF_1,...,F_d. Denote by NsN_s the number of exceedances among X1,...,XdX_1,...,X_d above a high threshold ss. The fragility index, defined by FI=limsE(NsNs>0)FI=\lim_{s\nearrow}E(N_s\mid N_s>0) if this limit exists, measures the asymptotic stability of the stochastic system X\bm X as the threshold increases. The system is called stable if FI=1FI=1 and fragile otherwise. In this paper we show that the asymptotic conditional distribution of exceedance counts (ACDEC) pk=limsP(Ns=kNs>0)p_k=\lim_{s\nearrow}P(N_s=k\mid N_s>0), 1kd1\le k\le d, exists, if the copula of X\bm X is in the domain of attraction of a multivariate extreme value distribution, and if lims(1Fi(s))/(1Fκ(s))=γi[0,)\lim_{s\nearrow}(1-F_i(s))/(1-F_\kappa(s))=\gamma_i\in[0,\infty) exists for 1id1\le i\le d and some κ1,...,d\kappa\in{1,...,d}. This enables the computation of the FI corresponding to X\bm X and of the extended FI as well as of the asymptotic distribution of the exceedance cluster length also in that case, where the components of X\bm X are not identically distributed

    Status of the Micromegas semi-DHCAL

    Full text link
    The activities towards the fabrication and test of a 1 m3 semi-digital hadronic calorime- ter are reviewed. The prototype sampling planes would consist of 1 m2 Micromegas chambers with 1 cm2 granularity and embedded 2 bits readout suitable for PFA calorime- try at an ILC detector. The design of the 1 m2 chamber is presented first, followed by an overview of the basic performance of small prototypes. The basic units composing the 1 m2 chamber are 32 \times 48 cm2 boards with integrated electronics and a micro-mesh. Results of character- ization tests of such boards are shown. Micromegas as a proportional detector is well suited for semi-digital hadronic calorimetry. In order to quantify the gain in perfor- mance when using one or more thresholds, simulation studies are being carried out, some of which will be reported in this contribution

    Test in a beam of large-area Micromegas chambers for sampling calorimetry

    Full text link
    Application of Micromegas for sampling calorimetry puts specific constraints on the design and performance of this gaseous detector. In particular, uniform and linear response, low noise and stability against high ionisation density deposits are prerequisites to achieving good energy resolution. A Micromegas-based hadronic calorimeter was proposed for an application at a future linear collider experiment and three technologically advanced prototypes of 1×\times1 m2^{2} were constructed. Their merits relative to the above-mentioned criteria are discussed on the basis of measurements performed at the CERN SPS test-beam facility

    Active stabilization studies at the sub-nanometer level for future linear colliders

    Get PDF
    The next collider which will be able to contribute significantly to the comprehension of matter is a high energy linear collider. The luminosity of this collider will have to be of 1035cm-2s-1, which imposes a vertical beam size of 0,7nm. The relative motion between the last two focusing magnets should not exceed a third of the beam size above 4Hz. Ground motion and acoustic noise can induce vibrations that have to be compensated with active stabilisation. In this paper, we describe the three aspects needed for such a development. We have assessed sensors capable of measuring sub-nanometre displacements, performed numerical calculations using finite element models to get the dynamic response of the structure, and developed a feedback loop for the active stabilisation. Combining the expertise into a mecatronics project made it possible to obtain a displacement RMS at 5Hz of 0.13nm at the free end of our prototype

    Active stabilization of a mechanical structure

    Get PDF
    This article [1] refers to a particular stage of our attempt to reach the stabilization of the linear collider final focus quadrupole. All along this final focus, an absolute displacement has to be lower than the third of nanometre above a few hertz. The presented intermediary step consists in doing active vibrations control of an elemen-tary mechanical structure in cantilever mode which is similar to the final focus. We consider mainly the active compensation and the latest results on a large prototype. Other aspects are also treated such as modelling, active isolation and instrumentation dedicated to the ground motion

    Vibration stabilization for a cantilever magnet prototype at the subnanometer scale

    Get PDF
    In the future linear colliders, the size of the beams is in the nanometer range, which requires stabilization of the final magnets before the interaction point. In order to guarantee the desired luminosity, an absolute displacement lower than 1/3 of the beam size, above a few hertz, has to be obtained. This paper describes an adapted instrumentation, the developed feedback loops dedicated to the active compensation and an adapted modelling able to simulate the behaviour of the structure. The obtained results at the subnanometer scale at the free end of a cantilever magnet prototype with a combination of the developed active compensation method and a commercial active isolation system are described

    Effect of argon ion energy on the performance of silicon nitridemultilayer permeation barriers grown by hot-wire CVD on polymers

    Get PDF
    One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support.Permeation barriers for organic electronic devices on polymer flexible substrates were realized by combining stacked silicon nitride (SiNx) single layers (50 nm thick) deposited by hot-wire chemical vapor deposition process at low-temperature (~100°C) with a specific argon plasma treatment between two successive layers. Several plasma parameters (RF power density, pressure, treatment duration) as well as the number of single layers have been explored in order to improve the quality of permeation barriers deposited on polyethylene terephthalate. In this work, maximumion energy was highlighted as the crucial parameter making it possible to minimize water vapor transmission rate (WVTR), as determined by the electrical calcium test method, all the other parameters being kept fixed. Thus fixing the plasma treatment duration at 8 min for a stack of two SiNx single layers, a minimum WVTR of 5 × 10−4 g/(m2 day), measured at room temperature, was found for a maximum ion energy of ~30 eV. This minimum WVTR value was reduced to 7 × 10−5 g/(m2 day) for a stack of five SiNx single layers. The reduction in the permeability is interpreted as due to the rearrangement of atoms at the interfaces when average transferred ion energy to target atoms exceeds threshold displacement energy.The authors are grateful to Dr. R. Cortes (PMC, Ecole Polytechnique) for XRR analysis, to Dr. P. Chapon (HORIBA Jobin Yvon) for GD-OES analysis and Dr. J. Leroy (CEA Saclay) for XPS analysis. This work was partly supported by the PICS (FrenchPortuguese) project No. 5336. One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support
    corecore