545 research outputs found

    A treatise on the Surveyor lunar landing dynamics and an evaluation of pertinent telemetry data returned by Surveyor I

    Get PDF
    Dynamic behavior of Surveyor landing system and surface material during lunar landin

    Optimal Sensor Locations for Structural Identification

    Get PDF
    The optimum sensor location problem, OSLP, may be thought of in terms of the set of systems, S, the class of input time functions, I, and the identification algorithm (estimator) used, E. Thus, for a given time history of input, the technique of determining the OSL requires, in general, the solution of the optimization and the identification problems simultaneously. A technique which uncouples the two problems is introduced. This is done by means of the concept of an efficient estimator for which the covariance of the parameter estimates is inversely proportional to the Fisher Information Matrix

    Shuttle payload bay dynamic environments: Summary and conclusion report for STS flights 1-5 and 9

    Get PDF
    The vibration, acoustic and low frequency loads data from the first 5 shuttle flights are presented. The engineering analysis of that data is also presented. Vibroacoustic data from STS-9 are also presented because they represent the only data taken on a large payload. Payload dynamic environment predictions developed by the participation of various NASA and industrial centers are presented along with a comparison of analytical loads methodology predictions with flight data, including a brief description of the methodologies employed in developing those predictions for payloads. The review of prediction methodologies illustrates how different centers have approached the problems of developing shuttle dynamic environmental predictions and criteria. Ongoing research activities related to the shuttle dynamic environments are also described. Analytical software recently developed for the prediction of payload acoustic and vibration environments are also described

    Verification for large space structures

    Get PDF
    The primary concern for verification is the dynamic characteristics of the space structure related to the control and sensor/actuator location. Properties such as modal density, range of natural frequencies, and modal displacements at the sensor/actuator location are considered and are simulated for the verification of the structure/control closed loop system. A space beam is studied in zero gravity environment and in a 1 G gravity environment, along with their governing equations

    A survey of load methodologies for shuttle orbiter payloads

    Get PDF
    Loads methods currently being used to design shuttle orbiter payloads are summarized. Methods used for the design of payloads launched by expendable launch vehicles are described in historical perspective. Experiences gained from expendable launch vehicle payloads are used to develop methodologies for the space shuttle orbiter payloads. The objectives for the development of a new methodology for the shuttle payloads are to reduce the cost and schedule for the payload load analysis by decoupling the payload analysis from the launch vehicle to the maximum extent possible. Methods are described for payload member load estimation or obtaining upper bounds for dynamic loads, as well as load prediction or calculating actual transient member load time histories

    Development and correlation: Viking Orbiter analytical dynamic model with modal test

    Get PDF
    The Viking Orbiter (VO) experience in the achievement of a mathematical model is described along with the following project activities: (1) the generation of the overall plan for load analysis, an analytical dynamic model, and development tests; (2) the performance of VO subsystem static and modal tests; and (3) the correlation of the VO system model analysis and test. Success is attributed to the coordination of analysis and test using substructure modal coupling techniques

    Summary of Voyager Design and Flight Loads

    Get PDF
    Estimates of flight loads for Voyager 1 and Voyager 2 are summarized and compared to the Voyager design loads obtained from the shock spectra/impedance method and to the loads obtained using space vehicle transient loads analysis. These estimates were obtained by using the measured flight accelerations at the launch vehicle/spacecraft interface as forcing functions for the Voyager mathematical model. Based on these data, an assessment of the shock spectra/impedance loads method used for Voyager is presented. The following conclusions were reached: (1) the shock spectra approach provided reasonable conservative design loads for Voyager, (2) care has to be executed to insure that all critical events are accounted for in constructing shock spectra envelopes, (3) the selection of critical events is not always obvious, especially for those flight events wherein the spacecraft dynamic characteristics are important, and (4) the success of the method is strongly dependent on the analysts' experience and judgement

    Pressure seal Patent

    Get PDF
    Pressure seals suitable for use in environmental test chamber

    Optimal placement of excitations and sensors by simulated annealing

    Get PDF
    The optimal placement of discrete actuators and sensors is posed as a combinatorial optimization problem. Two examples for truss structures were used for illustration; the first dealt with the optimal placement of passive dampers along existing truss members, and the second dealt with the optimal placement of a combination of a set of actuators and a set of sensors. Except for the simplest problems, an exact solution by enumeration involves a very large number of function evaluations, and is therefore computationally intractable. By contrast, the simulated annealing heuristic involves far fewer evaluations and is best suited for the class of problems considered. As an optimization tool, the effectiveness of the algorithm is enhanced by introducing a number of rules that incorporate knowledge about the physical behavior of the problem. Some of the suggested rules are necessarily problem dependent

    Computation of torsional vibration modes of Ranger and Surveyor space vehicles

    Get PDF
    Mathematical model for calculating free torsion modes of Atlas Agena Ranger and Atlas Centaur Surveyor spacecraft
    corecore