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SUMMARY

The optimum sensor l-ozation problem, OSLP, may be thought of in terms of the
set of systems, S, the class of input time functions, I, and the identificatior
algorithm (estimator) used, E. Thus, for a given time history of input, the
technique of determining the OSL requires, in general, the solution of the opti-
mizatjon and the identification problems simultaneously.: However, this paper
introduces a technique which uncouples the two problems. This is done by means
of the concept of an efficient estimator fpor which the covariarce of the parameter
estimates is inversely proportional to the Fisher Information Matrix.

INTRODUCTION

The problem of structural identification in structural engineering is one
which has received considerable attention from several resear- ‘ers in the recent
past (Refs. 1-4). Though various methods have been developed for identifying the
difrerent parameters that characterize a structure from records obtained in them
under various loading conditions, few investigators, if any, have looked at the
question of where to locate sensors in a structure to 1equ. 2 data for "best"
parametric identif’cation (Ref. 5). The problem of optimaliy locating sensors in
a suructural system arises from considerations of+ (1) minimizing the cost of
instrumentation; and (2) efficiently detecting structural changes in the system
with a view to acquiring improved assessment of structural integrity.

The problem addressed in this paper can be stated as follows: Given m sen-
scrs, .here should they he located in a structure so that records obtained from
those loca:ions yield the "best" estimates of the unknown parameters?

In the past, the optimal sensor location problem (OSLP) was solved by
positioning the given number of =ensors in the system, using the records obtained
it those leccations with a specific ectimator, and repeating the procedure for
different sensor locations. The set of locations which yield the "best" parameter
estimates would then be selected as optimal. The es:imates obtained, of course,
would naturally depend upon the type of estimator used. Thus the optimal loca-
tions are estimator dependent, and an exhaustive search needs to be performed for
each sp.cific estimator. Such a procedure, besides being highly computationa v
intensive, suffers from the majcr drawback of not yielding any physicel insti
into why certain locations are preferable to others.

Recently, work ¢ the solution of the OSIP was done by Shah and Udwadia
(Ref. 5). 1n brief, .hey used a linear relationship between small periurbations
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in a finite dimensional representation of the system parameters and a finiie
sample of cbservations of the system t.ne response. The error in the parameter
estimates are minimized, yielding the optimal locations. In this paper, we develop
a more direct approach to the problem which is both computationally superior, and
throws c¢.msicerable light on the rationale behind the optimal selection process.

We uncoupi= the optimizarion problem from the identification problem using
the concept of an ofiicient estimator (e.g., the maximum likelihood estimator as
time becomes very large). For such an  timator the covariance of the parameter
estima es is a minimum. Using this technique and motivated by heuristic argu-
ments, a rigorous form lation aud solution of the OSLP is presented. The method
is applied to a building structure mcdelled as a general linear dynamic system.
For the N degree of freedom system considcred, the methodology for selecting
m{m < N) ot the nodal displacements for purposes of measurement is presented.

Sample calculations are made for a simple building structure modelled as a

two-degree-of-freedom system subjected to base excitations. The uptimal sensor

location for the identification of: (a) the mass ratio; and (b) the stiffness
ratio is investigated.

The results indicate that the OSLP depends on:

i) the class of systems, S, to which the structure belongs;

2) the tvpe of excitation;

3) the actual system parar :ters involved; and

4) the parameters to be identified.

THEORY

Consider a system modelled by the equation

MX + CX + KX = F(t) (1)
where M, C, and K are the (NXN) mass, dauping and stiffness matrices, E(t) is
an (NX1) vector containing inertial forces and exte...ally applied loads and X
is tho N-vector of nodal displacements. Let B8y, 8¢ and Bg be vectors containing
the various parameters related to the mass matriz, the damping ma.rix and the

stiffness matrix, respectively, whick need to be identified. For convenience,
we collect these quantities in the parameter vector, 0, defined as

T _ | .T).TyT
) -[euleclex]

where the superscript T indicate matrix transpose. If the M, C and K are
symmetric each of the three subvectors has a maximum dimension of N(N+1)/2.

Given m sensors (m<N), we fhen need to find where to locate them so that
the covariance of the estimate, 6, is a minimum. Assune further that the
measurement vector Z{(t) can be expressed as
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Zi(t) = gi[X(e,t)] + Ni(t) , 1=1,2,...,N (2)

where Z; is the ith component of Z(t), and the functionals gy represent the
"measurement process'. The dependence of the response X on the parameter
vector 8 is explicitly noted The measurement noise Nj(t) is taken as non-
stationary Gaussian White noise with a variance of y2(t). Therefore,

E[Ni(tl)Nj(tzi]= wz(tl)éx(i-j)éb(tl-cz) . (3)

where dSg and d8p stand for the kroneker and the dirac-delta functions,
respectively. A total of m out of N responses neced to be selected so that
they contain the most information about the system parameters and are maxi-
mally sensitive to any changes in the parameter values. This "selectica"
process can be represented by an m-dimensional vector Y such that

¥(r) = 52(t) (4

where S is the (m x N) upper triangular selection matrix with each row con-
taining null elements except for one which is unity. The m different compo-
nents of Z selected to be measured are so ordered in vector Y, that if the
element in the i-th row and k-th column of S is unity, the (i+1)-ith row has
unity in its f-th column with & > k. The matrix S has the property that

P = STS in an (NXN) diagonal matrix with unity in its i-th row if, and only
if, Zy is selected to> be measured. The elements of P are otherwise zero.
Hence, one can write

Y(t)

SglX(8,t)] + SN(t) (54)

fle-

HIX(8,t)] + V{t) (5B)
f g; is linearly related to che response X , in general, then
H[X(6,t)] = SRX (6)

where R(:) can bhe thought of as a dynamic gain matrix. In the case that g4

is related tn _the resporse Xi oaly, then matrix R will reduce to a diagonal
matrix, J,

The prctlem of locating sensors in an optimal manner then reduces to
determining the selz2ction matrix S, or alternatively, finding the m locations
in P that should be unity. These locations must be so chosen as to obtain the
"best' parameter estimates. '

SOME MOTIVATING THOUGHTS AND THE FISHER INFORMATION MATRIX

Consider a case in which ore tries to estimate only one parameter, 61 (to
be identified) involved in a dynamic system model with only one sensor provided.
Therefore, one wants to ideally choose a location i (out of N possible such
locations) such that the measurement y4(t), 1ie[1,N], te(0,T) at location i yielids
the best estimate of the parameter 8]. Heuristically, one shculd place the
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sensor at such a location that the time history of measurements obtained at that
location is most sensitive to any changes in the parameter 6y. He~ce, in equa-
tion (5B) it is really the slope of H{X(8;,t)}] with respect to 8] that needs to
be maximized. However, since only the absolute magnitude of this slope is of
interest, it is logical to want i+ find i (or equivalently determine the selec-
tion matrix S described previously) such as to maximize (3H/861)2 over the inter-

val (0,T) during which the response is to be measured. This leads to maximizing
the following integral:

T 2

q; =f(:TH1) at . (7)

0

When there is more than one parameter to be estimated, and the number of
sensors is greater than unity, this intuitive approach needs to be extended in a
more rigorous wmanner. In such cases recourse to mathematical treatment is

necessary, and we shall see that such treatment will be in agreement with our
heuristic solution outlined above.

To further understand the problem, let us loo™: at it from another angle,
namely, the concept of an efficient unbiased estimator. For such as estimator

che covariance of the estimates is a minimum. Furthermcre, it can be shown that
for anv unbiased estimator of 9,

-1
T

eleo-d-07] 2| f(E) (%) 2o ®
0

where & is the estimate of 6 and the matrix [3H/230]; A=3Hi/86j. If the esti-
mator is "efficient", the above inequality becomes an equality. This means that

the left-hand side of inequality (8) takes its lowest value (minimum covariance).
Heunce,

-1

‘T
e e T
E[(e-e)(e-e)‘] - f(%) (%%)/qf’(t)dt 9

0

The term inside the bracket on the right-hand side of the equation (9) is known
as the Fisher Information Matrix, Q(T). Thus, maximizing Q(T) would indeed 1lead
to a minimization of the covariance of the estimate, 6.

Wa note then that the m sensor locations need to be so chosen that a suitable
norr « the matrix Q(T) given by

T

QUT) = f(g )T(%%)/w2<:)dc (10)
0

o]

[e-]
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is maximized. This constitutes an extension of equation (7), which we heuris-

tically derived earlier for the scalar case, to the vector situation. Introducing
equation (6) in equation (10) one may write

T
eR PRX

Q1) = f——z————e— d, (1)
A

where the ij element of Xe can be written as:

r axi
Lxe]i‘ =55 > 1c¢ [1,N}, 3 ¢ (1,m)
N J

where X = {x;}y and 8 = {65};. We note that the Fisher Matrix is symmetric and
is dependent on che 1ength of the record available, as well as the locations of
the sensors as determined by the matrix P.

If the m locations where the sensors are to be placed are denoted by
Si» k=1,2,...,m, then

m
=Y I (12)
k=1

k

where the (N x N) diagonal matrix Is, has all its elements equal to zero excepr
the element of the sy row, which is unity. Noting that P is a diagonal matrix,
equation (11) can be simplified to yield

T
m
Q[T;sl,sz,...,sm;S,G;I] = 2 f (13)
=5 T

where rsy is the sy row of the matrix R. Also in eq. (13) explicit mention is
made of the dependence of the Fisher Matrix on the time length T of the available
data, the syscem S, the parameter vector 6, and the time-variant input I, If the
matrix R 1s diagonal, with diagonal elements P1,---5PyNs then the ij element of
the matrix Q, after some manipulation, reduces to

m T 3xsk Bsk p(t)8k>
N R | B o
0

Each element of (j: represents the cross-sensitivity of meas.rement with respect
to the response x = of node s, .
Sy k
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The cptimal sensor locations are then obtained by picking m locations sy,
k=1,2,...,m, out of a possible N, so that a suitable norm of the matrix Q is

maximized (e.g., the trace norm, etc...). This may be specified by the
condition

max [IQ[f;s 3Snseee38 ;S,S;I][l . (15)
Sk e(1,N) 12 n

Although there are several matrix norms which could be used, perhaps the
most useful and physically meaningful in this context is the trace norm. In
order not to detract the reader from the basic methodology we defer an exhaustive
treatment of suitable matrix norms to a later communicatiom.

The methodology presented up to this point is valid for both linear and non-
linear systems since the criterion developed in equation (13) was derived using

only equations (5) ané (9). We will now indicate its application to linear
multi-degree-of-freedom systems.

APPLICATION TO LINEAR DYNAMIC SYSTEMS
Consider the N-degree-of-freedom dynamic system whose governing differential
equation of motion is given by eq. (1), together with X(tg) = X, X(tg) = Xo,

where Xg and X are the given initial conditions for the system. Assume the
system to be classically damped. Introducing

X(t) = ¢n(t) (13)

where ¢ is the (N x N) weighted modal matrix and n(t) is the N-vector »f
generalized coordinates we get

R+ 26gunin = $TF(E),  n(tg) = oTMRG, B (rg) = oTMX,, (17)

where the (N x N) diagonal matrix A is given by

[\A\] = ¢Tko = [\uﬁ\], and g = [\51\].

The solutica of equation (17) is given as

t
ni(t) = noiui(t—t0)+ﬁoivi(t—t0)+ f hi(t—‘l‘)pi(‘t)d‘r E (18

%o

where Ny and ﬁo are initial conditions and
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B i
ui(t) = EXP(—Eiwit) Coswd t + Zr—-Sinwd t s
i d i
i
v (t) = EKP(— )) Sinw, t
148 = o BP(fjuyt ) nuy b
d. i
i
h, (t) = Vi(t)'

€
il

7 ui\/l - Ei , and

= oTF(t), 1i=1,2,...,N.

o
~
r.
~
|

Also, differentiating equation (1) with respect to 8, yields

" . VANVANRVAN o
MK HCK +RX = F(t) - (Mex+cex+xe ); X, (0) = 0, X,(0) = 0
where
é]ij B, v
. 3
MX = (M XM X:M XM X
6 o8 1T, 0, L
i=1,...,N, and 3 < 1,...,L.
Introducing
Xe = ¢z (19)
yields
426w zthz = G(t) (20)
where
NN N
G(t) = ¢T[%6-(Mex+cex+xex)] . (21)

Equation (21) can further be simplified to give

/NN /\>]

G(t) = ¢T[Fe—(ueon+ceon+Ke¢n (22)
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where 1 and n can be obtained by differentiation of eq. (18).

as follows
n, ()
where

Wiy

¥, (t)

Hi(t)

pi(t)

Also
ni(t)
where

wi(t)

t
no wi(t-to)+ﬁoiYi(t-t0) + J/.'Ei(t-r)pi(r)dt
t

i
0

E9\
EXP(-&iwit) Cosu.xo1 t —(m >Sinwd t R

T\Oiwi(t:-to)+noiYi(t-to) +f hi(t—T)pi(T)dT
%o

~n
<

EXP L) 50, )| sthe, e
("1w1t) @ “q <§1 1) g
a, i 1
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t ’
di

p;(t) = @TF(t), i=1,2,...,N,

Therefore, substituting equations (23) and (24) into equation (22) gives G(t).
Consequently the solution of equation (20) can be written as:

t
zij(t) = f hi(t-r)Gij(r)dr (25)

o

where hj(t) is the same as that of eq. (18). Notice that the initial conditions
in eq. (20) are zero. This is due to the fact that the initial conditions of
(18) are known constants.

If we assume that [Z] is expressed as a linear combination of [K] and [M],
then eq. (22) zan further be simplified. Namely,

C = 20K+28M, (26)

where a and B are known constants. Hence in equation (17), the percentage of
damping, EN, can be expressed as:

g, = au +-£% , i=1,2,...,N (27)

To further simplify equation (22) under this assumption, let us consider the
following three cases:

1) The vector 6 contains only 6jM, 1.e., only estimation of mass param-
eters is undertaken. Then

T N\
G(t) = ¢ [Fe - Me¢(n+28n)] . (284)

2) The vector 8 contains only the subvector 6g. Then
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r N

G(t) = ¢ [Fy - Kgo(mr2an)] (288)
3) Finally if tha vector 8 = [a B]T .
G(t) = <¢TFQ - 2An, ¢TFB - 216»1 (29)

If the input F(t) is not a function of @8, then Fg would be omitted all through
this discussion. Once the solution of equation (25) is obtained, the Fisher
Matrices may be obtained as in equation (13). Hence

T zT¢TrT r_ 9%z
m sk sk
Q=Ef————2— dt (30)
=19, ¥ (t)

We note that the summation form of relation (30) is particularly amenable to the
maximization of the trace nnrm of Q.
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EXAMFLE

To illustrate some of the ideas of the previous section, consider the prchlem
of finding the optimal sensor location (OSL) in a structural system modelled by the

two-degree-of-freedom system (shown in Figure 1) which is subjected to the base
excitation of f(t).

The governing differential equation of motion can pe expressed as

M+ CX + KX = -W £(¢) (31)

where X = <xl x2>T,(I= aK, W = <Am m>T and the matrices M and K are

A O B+l -1
M= m, and K = k
0 1 -1 1

A case study for locating sensors to best identify (1) the mass ratio, A, of the

first to the second floor and (2) the stiffness ratio, B, ~f the first to the
second flcor, will be presented.

Let sj denote the lower mass location and sy the upper mass location. The
selection between the locations can be equated to determining the one non-zero
element of the [1x2] selection matrix, S, with the measurement H(t) defined by

H(t) = SX + V(t) ,

where, V/t) is Stationary Gaussian White Noise (5 G W N) with w(t)=w°.

If S = [1 0] the lower mass is selected for measurement; if S = [C 1] the
gpper mass is selected. The location s; would then be preferred over the loca-
tion s for identifyirg the parameter A, 1f Q{T,s;] > Q[T,s2], where T is the
time that the measurement is taken,

1 ! axl 3x2 1 0 3;%
Q (1) 4 QIT,s] = L2 / <-a7§ _éK> o ol de
o 0 —SX
- L jr (—af—l—>2 dt (324)
v 3A ’ )
o] 0



and

ax
T 1
ax. 9x 0 0 —
1 1 %% 3A
A 1= 12
Q, (D 2QlT,s,!] 2 f <aA aA) ] ax, (3

T 01 2
3

N 2

o 0

Since only one parameter is being estimated the Fisher matrices reduce to
scalars.

The dependence of the OSL on various types of the base excitations can be

studied now. Let us for this presentation consider ground acceleration in the
form of a delta function, i.e., f(t) = 6(t).

In this case, closed form solutions fo1 Qi and Q2 can be obtained.

For the OSL problem for the "best" (minimum covariance) identification of
the parameter A (given the parameters B and «) using an impulsive base excitation,
Figure 2-A shows the plots of th2 ratio of the information matrices Q1(T)/Q2(T),
for T = 50 secs, for various values of the parameters A (which is to be identi-
fied) and o A awg, where wo A Yk/m. Points on the graph with ordinates greater
than unity indicate the optimal location to be the lowar mass level and vice
versa. The graphs indicate that the optimal location in most cases, for the
range of A considered, is the upper mass level. However, we obse ve that for
some small values of A and a* the OSL is the lower level. We note, interestingly
enough, that the optimal sensor lecation for identification of A actually depends
not only on the actual values of B and a which are presumably known, but also on
the value of the parameter A itself which is to be jdentified! Thus to be able

to ascertain the optimal sensor location some a priori assessment of A is
necessary.

Figure 2-B shows that the ontimal location for identification of the param-
eter B (given A and a), using an impulsive base input, is again the upper mass
level for the range of B values considered. For jarger B values, however, and
a*>0,05, the trend appears to be more and more in favor of the upper mass. This
seems intuitively correct, for as B becomes larger, the lower part of the system
becomes stiffer and the OSL would be the upper mass level.

Figure 2-C is associated with the OSLP for estirating the parameter B usir-
a sinusciual base excitation, f(t) = a sin wt. The figure shows that as the
normalized driving frequency y = w/w, varies, the OSL changes. For this example
the Fisher Matrices can be computed in closed form. For the estimation of B,
(g*ven A and a* = 0) the dimensi.nless driving frequency y = vV1+l/A yields no
information on B from records a: either of the two mass lavels., The responses at
the two mass levels yield identical amour.*s of information on B at y = 0 and
vy = /2 for A # 1, as indicated by the values of Q1/Q2 = 1 at these frequencies.
The value of Q3j/Q2 = 0 at y = 1 is indicative of the fact that the upper mass
level is .. far better location for a sensor when estimating B with o* = 0.
Figure 2-D shows the mean value of the ritio (1/Q2 for a random Gaussian white
noise base excitation together with the 1-g band. The OSL appears to be at the
upper mass level for identification of A.
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CONCLUSIONS AND DISCUSSION

This paper presents a general methodology for determining the optimal sensor
locations in dynamic systems for obtaining records which would enable the 'best"
(minimum covariance) identification of a given set of unknown parzmeters in the
system. The technique utilizes the concept of an efficient estimator to uncouple
the identification from the optimization problem. In order to present the basic

idea in as clear a fashion as possible, we have restricted the discussion in this
sequel tec linear systems.

The method has been illustrated by application to a two degree of freedom
system. Though the results presented here for the simple system chosen form only
a first step towards acquiring a detailed understanding of the OSL problem, the
following conclusions appear to be relevant at this time:

(1) The OSL for a given system heavily depends on the class of farcing
functions used for obtaining responsé data. 1In this study, an im-
pulsive base motion is considered.

(2) The OSL for linsar dynamic systems is independent of the amplitude of
the forcing function.

(3) The OSL depends in general on all the values of system parameters. For
instance, the OSL for estimating A with minimum covariance depends not
only on the actual parameter values B and a but on the value of A it-
self for the system! This implies that the OSL problem associated with
identifying a given parameter {(or a set of parameters) in a dynemic
system necessitates the knowledge of some a priori estimates of the
unknown parameter(s).

(4) 1he results of our simple example show that che OSL protlem may yield
solutions which may be dirficult to predict on purely heurisric
grounds. The OSL appears to depend, even tur this relatively simple
problem, in a rather cumplex manner on the actual parameter values of
the system and the nature of the base excitation.
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Figure 2-C.
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