317 research outputs found

    Phases, many-body entropy measures and coherence of interacting bosons in optical lattices

    Get PDF
    Already a few bosons with contact interparticle interactions in small optical lattices feature a variety of quantum phases: superfluid, Mott-insulator and fermionized Tonks gases can be probed in such systems. To detect these phases -- pivotal for both experiment and theory -- as well as their many-body properties we analyze several distinct measures for the one-body and many-body Shannon information entropies. We exemplify the connection of these entropies with spatial correlations in the many-body state by contrasting them to the Glauber normalized correlation functions. To obtain the ground-state for lattices with commensurate filling (i.e. an integer number of particles per site) for the full range of repulsive interparticle interactions we utilize the multiconfigurational time-dependent Hartree method for bosons (MCTDHB) in order to solve the many-boson Schr\"odinger equation. We demonstrate that all emergent phases -- the superfluid, the Mott insulator, and the fermionized gas can be characterized equivalently by our many-body entropy measures and by Glauber's normalized correlation functions. In contrast to our many-body entropy measures, single-particle entropy cannot capture these transitions.Comment: 11 pages, 7 figures, software available at http://ultracold.or

    Fidelity and Entropy Production in Quench Dynamics of Interacting Bosons in an Optical Lattice

    Get PDF
    We investigate the dynamics of a few bosons in an optical lattice induced by a quantum quench of a parameter of the many-body Hamiltonian. The evolution of the many-body wave function is obtained by solving the time-dependent many-body Schrödinger equation numerically, using the multiconfigurational time-dependent Hartree method for bosons (MCTDHB). We report the time evolution of three key quantities, namely, the occupations of the natural orbitals, that is, the eigenvalues of the one-body reduced density matrix, the many-body Shannon information entropy, and the quantum fidelity for a wide range of interactions. Our key motivation is to characterize relaxation processes where various observables of an isolated and interacting quantum many-body system dynamically converge to equilibrium values via the quantum fidelity and via the production of many-body entropy. The interaction, as a parameter, can induce a phase transition in the ground state of the system from a superfluid (SF) state to a Mott-insulator (MI) state. We show that, for a quench to a weak interaction, the fidelity remains close to unity and the entropy exhibits oscillations. Whereas for a quench to strong interactions (SF to MI transition), the relaxation process is characterized by the first collapse of the quantum fidelity and entropy saturation to an equilibrium value. The dip and the non-analytic nature of quantum fidelity is a hallmark of dynamical quantum phase transitions. We quantify the characteristic time at which the quantum fidelity collapses and the entropy saturates

    Thermocapillary Effects in Systems with Variable Liquid Mass Exposed to Concentrated Heating

    Get PDF
    Abstract: Interface deformation and thermocapillary rupture in a cavity with free upper surface subject to concentrated heating from above is investigated. The dynamics of the process is modulated by placing different amounts of liquid in the cavity. The results determined for large Biot and zero Marangoni numbers show the existence of limit points beyond which steady, continuous interface cannot exist and processes leading to the interface rupture develop. Evolution of the limit point as a function of the mass of the liquid is investigated. The topology of the flow field is found to be qualitatively similar, regardless of whether the cavity is over-filled or only partially filled. The available results demonstrate that cavity over-filling is an effective strategy for prevention of interface rupture, but only when the flow Reynolds number is small. This strategy becomes completely ineffective for high enough Re and deep enough liquid. Cavity over-filling can thus be used as a tool for prevention of rupture, but only under restrictive range of parameters

    Numerical study of the coupled time-dependent Gross-Pitaevskii equation: Application to Bose-Einstein condensation

    Full text link
    We present a numerical study of the coupled time-dependent Gross-Pitaevskii equation, which describes the Bose-Einstein condensate of several types of trapped bosons at ultralow temperature with both attractive and repulsive interatomic interactions. The same approach is used to study both stationary and time-evolution problems. We consider up to four types of atoms in the study of stationary problems. We consider the time-evolution problems where the frequencies of the traps or the atomic scattering lengths are suddenly changed in a stable preformed condensate. We also study the effect of periodically varying these frequencies or scattering lengths on a preformed condensate. These changes introduce oscillations in the condensate which are studied in detail. Good convergence is obtained in all cases studied.Comment: 9 pages, 10 figures, accepted in Physical Review

    Stabilizing an Attractive Bose-Einstein Condensate by Driving a Surface Collective Mode

    Full text link
    Bose-Einstein condensates of 7^7Li have been limited in number due to attractive interatomic interactions. Beyond this number, the condensate undergoes collective collapse. We study theoretically the effect of driving low-lying collective modes of the condensate by a weak asymmetric sinusoidally time-dependent field. We find that driving the radial breathing mode further destabilizes the condensate, while excitation of the quadrupolar surface mode causes the condensate to become more stable by imparting quasi-angular momentum to it. We show that a significantly larger number of atoms may occupy the condensate, which can then be sustained almost indefinitely. All effects are predicted to be clearly visible in experiments and efforts are under way for their experimental realization.Comment: 4 ReVTeX pages + 2 postscript figure
    corecore