393 research outputs found

    From order to chaos in Earth satellite orbits

    Full text link
    We consider Earth satellite orbits in the range of semi-major axes where the perturbing effects of Earth's oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of first importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations, and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors, and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.Comment: 30 pages, 9 figures. Accepted for publication in the Astronomical Journa

    MAARS: a novel high-content acquisition software for the analysis of mitotic defects in fission yeast

    Get PDF
    Faithful segregation of chromosomes during cell division relies on multiple processes such as chromosome attachment and correct spindle positioning. Yet mitotic progression is defined by multiple parameters, which need to be quantitatively evaluated. To study the spatiotemporal control of mitotic progression, we developed a high-content analysis (HCA) approach that combines automated fluorescence microscopy with real-time quantitative image analysis and allows the unbiased acquisition of multiparametric data at the single-cell level for hundreds of cells simultaneously. The Mitotic Analysis and Recording System (MAARS) provides automatic and quantitative single-cell analysis of mitotic progression on an open-source platform. It can be used to analyze specific characteristics such as cell shape, cell size, metaphase/anaphase delays, and mitotic abnormalities including spindle mispositioning, spindle elongation defects, and chromosome segregation defects. Using this HCA approach, we were able to visualize rare and unexpected events of error correction during anaphase in wild-type or mutant cells. Our study illustrates that such an expert system of mitotic progression is able to highlight the complexity of the mechanisms required to prevent chromosome loss during cell division

    Local carrier recombination and associated dynamics in m-plane InGaN/GaN quantum wells probed by picosecond cathodoluminescence

    Get PDF
    Research data in support of the publication "Local carrier recombination and associated dynamics in m-plane InGaN/GaN quantum wells probed by picosecond cathodoluminescence". We have included the original data (tab-separated text files) as plotted for the quantum wells, measured by spatially- and time-resolved cathodoluminescence

    The use of tire rubber in the production of high-performance concrete

    Get PDF
    The advances in concrete technology lead to the search for alternative materials that provide improvements in concrete properties while at the same time collaborating with sustainable practices in construction. In this study, the influence of the incorporation of waste tire rubber on the mechanical properties of high-performance concrete was discussed. The waste rubber from the tire retreading process was used in partial substitution of the fine aggregate (sand) in the percentages of 7.5%, 15% and 30% with respect to the mass of the sand. For the characterization of the concrete, the following tests were carried out: water absorption, void index, specific density, compressive strength, flexural tensile strength, modulus of elasticity and microscopy analysis. The incorporation of rubber as aggregate in high-performance concrete proved to be promising for the production of a structural concrete with special characteristics, besides collaborating with the proper disposal of waste tires651110114sem informaçã

    The P2Y1 receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice

    Get PDF
    Pancreatic β cells express several P2 receptors including P2Y1 and the modulation of insulin secretion by extracellular nucleotides has suggested that these receptors may contribute to the regulation of glucose homeostasis. To determine whether the P2Y1 receptor is involved in this process, we performed studies in P2Y1 mice. In baseline conditions, P2Y1-mice exhibited a 15% increase in glycemia and a 40% increase in insulinemia, associated with a 10% increase in body weight, pointing to a role of the P2Y1 receptor in the control of glucose metabolism. Dynamic experiments further showed that P2Y1-mice exhibited a tendency to glucose intolerance. These features were associated with a decrease in the plasma levels of free fatty acid and triglycerides. When fed a lipids and sucrose enriched diet for 15 weeks, the two genotypes no longer displayed any significant differences. To determine whether the P2Y1 receptor was directly involved in the control of insulin secretion, experiments were carried out in isolated Langerhans islets. In the presence of high concentrations of glucose, insulin secretion was significantly greater in islets from P2Y1-mice. Altogether, these results show that the P2Y1 receptor plays a physiological role in the maintenance of glucose homeostasis at least in part by regulating insulin secretion

    Local carrier recombination and associated dynamics in m-plane InGaN/GaN quantum wells probed by picosecond cathodoluminescence

    Get PDF
    We report on spatially resolved and time-resolved cathodoluminescence (CL) studies of the recombination mechanisms of InGaN/GaN quantum wells (QWs) grown by metal-organic vapour phase epitaxy on bulk m-plane Ammono GaN substrates. As a result of the 2° miscut of the GaN substrate, the sample surface exhibits step bunches, where semi-polar QWs with a higher indium concentration than the planar m-plane QWs form during the QW growth. Spatially resolved time-integrated CL maps under both continuous and pulsed excitation show a broad emission band originating from the m-plane QWs and a distinct low energy emission originating from the semi-polar QWs at the step bunches. High resolution time-resolved CL maps reveal that when the m-QWs are excited well away from the step bunches the emission from the m-plane QWs decays with a time constant of 350 ps, whereas the emission originating semi-polar QWs decays with a longer time constant of 489 ps. The time constant of the decay from the semi-polar QWs is longer due to the separation of the carrier wavefunctions caused by the electric field across the semi-polar QWs.This work has been funded by the EPSRC (Grant Nos. EP/J003603/1, EP/J001627/1, and EP/M011682/1) and in part by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grants Agreement No. 279361 (MACONS)
    corecore