2,436 research outputs found

    Spatial patterns and scale freedom in a Prisoner's Dilemma cellular automata with Pavlovian strategies

    Full text link
    A cellular automaton in which cells represent agents playing the Prisoner's Dilemma (PD) game following the simple "win-stay, loose-shift" strategy is studied. Individuals with binary behavior, such as they can either cooperate (C) or defect (D), play repeatedly with their neighbors (Von Neumann's and Moore's neighborhoods). Their utilities in each round of the game are given by a rescaled payoff matrix described by a single parameter Tau, which measures the ratio of 'temptation to defect' to 'reward for cooperation'. Depending on the region of the parameter space Tau, the system self-organizes - after a transient - into dynamical equilibrium states characterized by different definite fractions of C agents (2 states for the Von Neumann neighborhood and 4 for Moore neighborhood). For some ranges of Tau the cluster size distributions, the power spectrums P(f) and the perimeter-area curves follow power-law scalings. Percolation below threshold is also found for D agent clusters. We also analyze the asynchronous dynamics version of this model and compare results.Comment: Accepted for publication in JSTA

    Naming Game on Adaptive Weighted Networks

    Full text link
    We examine a naming game on an adaptive weighted network. A weight of connection for a given pair of agents depends on their communication success rate and determines the probability with which the agents communicate. In some cases, depending on the parameters of the model, the preference toward successfully communicating agents is basically negligible and the model behaves similarly to the naming game on a complete graph. In particular, it quickly reaches a single-language state, albeit some details of the dynamics are different from the complete-graph version. In some other cases, the preference toward successfully communicating agents becomes much more relevant and the model gets trapped in a multi-language regime. In this case gradual coarsening and extinction of languages lead to the emergence of a dominant language, albeit with some other languages still being present. A comparison of distribution of languages in our model and in the human population is discussed.Comment: 22 pages, accepted in Artificial Lif

    Stochasticity and evolutionary stability

    Full text link
    In stochastic dynamical systems, different concepts of stability can be obtained in different limits. A particularly interesting example is evolutionary game theory, which is traditionally based on infinite populations, where strict Nash equilibria correspond to stable fixed points that are always evolutionarily stable. However, in finite populations stochastic effects can drive the system away from strict Nash equilibria, which gives rise to a new concept for evolutionary stability. The conventional and the new stability concepts may apparently contradict each other leading to conflicting predictions in large yet finite populations. We show that the two concepts can be derived from the frequency dependent Moran process in different limits. Our results help to determine the appropriate stability concept in large finite populations. The general validity of our findings is demonstrated showing that the same results are valid employing vastly different co-evolutionary processes

    Group selection models in prebiotic evolution

    Full text link
    The evolution of enzyme production is studied analytically using ideas of the group selection theory for the evolution of altruistic behavior. In particular, we argue that the mathematical formulation of Wilson's structured deme model ({\it The Evolution of Populations and Communities}, Benjamin/Cumings, Menlo Park, 1980) is a mean-field approach in which the actual environment that a particular individual experiences is replaced by an {\it average} environment. That formalism is further developed so as to avoid the mean-field approximation and then applied to the problem of enzyme production in the prebiotic context, where the enzyme producer molecules play the altruists role while the molecules that benefit from the catalyst without paying its production cost play the non-altruists role. The effects of synergism (i.e., division of labor) as well as of mutations are also considered and the results of the equilibrium analysis are summarized in phase diagrams showing the regions of the space of parameters where the altruistic, non-altruistic and the coexistence regimes are stable. In general, those regions are delimitated by discontinuous transition lines which end at critical points.Comment: 22 pages, 10 figure

    Coevolutionary Dynamics: From Finite to Infinite Populations

    Get PDF
    Traditionally, frequency dependent evolutionary dynamics is described by deterministic replicator dynamics assuming implicitly infinite population sizes. Only recently have stochastic processes been introduced to study evolutionary dynamics in finite populations. However, the relationship between deterministic and stochastic approaches remained unclear. Here we solve this problem by explicitly considering large populations. In particular, we identify different microscopic stochastic processes that lead to the standard or the adjusted replicator dynamics. Moreover, differences on the individual level can lead to qualitatively different dynamics in asymmetric conflicts and, depending on the population size, can even invert the direction of the evolutionary process.Comment: 4 pages (2 figs included). Published in Phys. Rev. Lett., December 200

    The shape of ecological networks

    Full text link
    We study the statistics of ecosystems with a variable number of co-evolving species. The species interact in two ways: by prey-predator relationships and by direct competition with similar kinds. The interaction coefficients change slowly through successful adaptations and speciations. We treat them as quenched random variables. These interactions determine long-term topological features of the species network, which are found to agree with those of biological systems.Comment: 4 pages, 2 figure

    Asexual and sexual replication in sporulating organisms

    Full text link
    This paper develops models describing asexual and sexual replication in sporulating organisms. Replication via sporulation is the replication strategy for all multicellular life, and may even be observed in unicellular life (such as with budding yeast). We consider diploid populations replicating via one of two possible sporulation mechanisms: (1) Asexual sporulation, whereby adult organisms produce single-celled diploid spores that grow into adults themselves. (2) Sexual sporulation, whereby adult organisms produce single-celled diploid spores that divide into haploid gametes. The haploid gametes enter a haploid "pool", where they may recombine with other haploids to form a diploid spore that then grows into an adult. We consider a haploid fusion rate given by second-order reaction kinetics. We work with a simplified model where the diploid genome consists of only two chromosomes, each of which may be rendered defective with a single point mutation of the wild-type. We find that the asexual strategy is favored when the rate of spore production is high compared to the characteristic growth rate from a spore to a reproducing adult. Conversely, the sexual strategy is favored when the rate of spore production is low compared to the characteristic growth rate from a spore to a reproducing adult. As the characteristic growth time increases, or as the population density increases, the critical ratio of spore production rate to organism growth rate at which the asexual strategy overtakes the sexual one is pushed to higher values. Therefore, the results of this model suggest that, for complex multicellular organisms, sexual replication is favored at high population densities, and low growth and sporulation rates.Comment: 8 pages, 5 figures, to be submitted to Journal of Theoretical Biology, figures not included in this submissio

    Multi-level selectional stalemate in a simple artificial chemistry

    Get PDF
    We describe a simple artificial chemistry which abstracts a small number of key features from the origin of life "replicator world" hypotheses. We report how this can already give rise to moderately complex and counter-intuitive evolutionary phenomena, including macro- evolutionary deterioration in replication fidelity (which corresponds to intrinsic replicator fitness in this model). We briefly describe the extension of this model to incorporate a higher, protocell, level of selection. We show that the interaction between the two levels of selection then serves to control parasitic exploitation at the molecular level, while still significantly constraining accessible evolutionary trajectories at the protocell level. We conclude with a brief discussion of the implications for further work

    Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience

    Full text link
    Physical symbol systems are needed for open-ended cognition. A good way to understand physical symbol systems is by comparison of thought to chemistry. Both have systematicity, productivity and compositionality. The state of the art in cognitive architectures for open-ended cognition is critically assessed. I conclude that a cognitive architecture that evolves symbol structures in the brain is a promising candidate to explain open-ended cognition. Part 2 of the paper presents such a cognitive architecture.Comment: Darwinian Neurodynamics. Submitted as a two part paper to Living Machines 2013 Natural History Museum, Londo

    Phase transitions and volunteering in spatial public goods games

    Full text link
    Cooperative behavior among unrelated individuals in human and animal societies represents a most intriguing puzzle to scientists in various disciplines. Here we present a simple yet effective mechanism promoting cooperation under full anonymity by allowing for voluntary participation in public goods games. This natural extension leads to rock--scissors--paper type cyclic dominance of the three strategies cooperate, defect and loner i.e. those unwilling to participate in the public enterprise. In spatial settings with players arranged on a regular lattice this results in interesting dynamical properties and intriguing spatio-temporal patterns. In particular, variations of the value of the public good leads to transitions between one-, two- and three-strategy states which are either in the class of directed percolation or show interesting analogies to Ising-type models. Although volunteering is incapable of stabilizing cooperation, it efficiently prevents successful spreading of selfish behavior and enables cooperators to persist at substantial levels.Comment: 4 pages, 5 figure
    corecore