5,235 research outputs found
Breadboard linear array scan imager using LSI solid-state technology
The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained
Chocolat noir ou chocolat blanc? Le cacao et la santé cardiovasculaire
Epidemiological data show that a regular dietary intake of plant-derived foods reduces the risk of cardiovascular disease. Recent research indeed demonstrates interesting data about cocoa consumption, with high concentrations of polyphenols, and beneficial effects on blood pressure, insulin resistance and platelet function. Although still debated, a range of potential mechanisms through which cocoa might exert their benefits on cardiovascular health have been suggested: activation of nitric oxide, antioxidant, anti-inflammatory, anti-platelet effects, which might in turn improve endothelial function, lipid levels, blood pressure and insulin resistance. This article reviews available data about the effects of the consumption of cocoa and different types of chocolate on cardiovascular health, and outlines potential mechanisms involved on the basis of recent studies
Design and throughput simulations of a hard x-ray split and delay line for the MID station at the European XFEL
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in AIP Conference Proceedings 1741, 030010 (2016) and may be found at https://doi.org/10.1063/1.4952833.A hard X-ray Split and Delay Line (SDL) under development for the Materials Imaging and Dynamics (MID) station at the European X-Ray Free-Electron Laser (XFEL.EU) is presented. This device will provide pairs of X-ray pulses with a variable time delay ranging from −10 ps to 800 ps in a photon energy range from 5 to 10 keV. Throughput simulations in the SASE case indicate a total transmission of 1.1% or 3.5% depending on the operation mode. In the self-seeded case of XFEL.EU operation simulations indicate that the transmission can be improved to more than 11%.BMBF, 05K13KT4, Verbundprojekt FSP 302 - Freie-Elektronen-Laser: Nanoskopische Systeme. Teilprojekt 1: Split-and-Delay Instrument für die European XFEL Beamline Materials Imaging and Dynamic
Development of a hard X-ray split-and-delay line and performance simulations for two-color pump-probe experiments at the European XFEL
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Review of Scientific Instruments 89, 063121 (2018) and may be found at https://doi.org/10.1063/1.5027071.A hard X-ray Split-and-Delay Line (SDL) under construction for the Materials Imaging and Dynamics station at the European X-Ray Free-Electron Laser (XFEL) is presented. This device aims at providing pairs of X-ray pulses with a variable time delay ranging from −10 ps to 800 ps in a photon energy range from 5 to 10 keV for photon correlation and X-ray pump-probe experiments. A custom designed mechanical motion system including active feedback control ensures that the high demands for stability and accuracy can be met and the design goals achieved. Using special radiation configurations of the European XFEL’s SASE-2 undulator (SASE: Self-Amplified Spontaneous Emission), two-color hard x-ray pump-probe schemes with varying photon energy separations have been proposed. Simulations indicate that more than 109 photons on the sample per pulse-pair and up to about 10% photon energy separation can be achieved in the hard X-ray region using the SDL.BMBF, 05K13KT4, Verbundprojekt FSP 302 - Freie-Elektronen-Laser: Nanoskopische Systeme. Teilprojekt 1: Split-and-Delay Instrument für die European XFEL Beamline Materials Imaging and DynamicsBMBF, 05K16BC1, Split-and-Delay Instrument für die European XFEL Beamline Materials Imaging and Dynamic
Социокультурный компонент содержания обучения как одно из средств повышения мотивации изучения иностранных языков
Показана важность мотивации при усвоении иностранного языка. Установлено, что использование социокультурного компонента обучения отражает реальные потребности обучающихся в получении межпредметного знания, связанного с организацией культурных связей с носителями языка. Делается вывод о том, что задания, цель которых заключается в формировании социокультурной компетенции, являются средством повышения мотивации изучения иностранного языка, в частности, благодаря своей исследовательско-поисковой направленности
Probabilistic modeling of noise transfer characteristics in digital circuits
Device scaling, the driving force of CMOS technology, led to continuous
decrease in the energy level representing logic states. The resulting small
noise margins in combination with increasing problems regarding the supply
voltage stability and process variability creates a design conflict between
efficiency and reliability. This conflict is expected to rise more in future
technologies. Current research approaches on fault-tolerance architectures
and countermeasures at circuit level, unfortunately, cause a significant
area and energy penalty without guaranteeing absence of errors. To overcome
this problem, it seems to be attractive to tolerate bit errors at circuit
level and employ error handling methods at higher system levels. To do this,
an estimate of the bit error rate (BER) at circuit level is necessary. Due
to the size of the circuits, Monte Carlo simulation suffers from impractical
runtimes. Therefore the needed modeling scheme is proposed. The model allows
a probabilistic estimation of error rates at circuit level taking into
account statistical effects ranging from supply noise and electromagnetic
coupling to process variability within reasonable runtimes
Quantitative comparison of performance analysis techniques for modular and generic network-on-chip
NoC-specific parameters feature a huge impact on performance and implementation costs of NoC. Hence, performance and cost evaluation of these parameter-dependent NoC is crucial in different design-stages but the requirements on performance analysis differ from stage to stage. In an early design-stage an analysis technique featuring reduced complexity and limited accuracy can be applied, whereas in subsequent design-stages more accurate techniques are required. <br><br> In this work several performance analysis techniques at different levels of abstraction are presented and quantitatively compared. These techniques include a static performance analysis using timing-models, a Colored Petri Net-based approach, VHDL- and SystemC-based simulators and an FPGA-based emulator. Conducting NoC-experiments with NoC-sizes from 9 to 36 functional units and various traffic patterns, characteristics of these experiments concerning accuracy, complexity and effort are derived. <br><br> The performance analysis techniques discussed here are quantitatively evaluated and finally assigned to the appropriate design-stages in an automated NoC-design-flow
Immunisation with ‘naïve' syngeneic dendritic cells protects mice from tumour challenge
Dendritic cells (DCs) ‘pulsed' with an appropriate antigen may elicit an antitumour immune response in mouse models. However, while attempting to develop a DC immunotherapy protocol for the treatment of breast cancer based on the tumour-associated MUC1 glycoforms, we found that unpulsed DCs can affect tumour growth. Protection from RMA-MUC1 tumour challenge was achieved in C57Bl/6 MUC1 transgenic mice by immunising with syngeneic DCs pulsed with a MUC1 peptide. However, unpulsed DCs gave a similar level of protection, making it impossible to evaluate the effect of immunisation of mice with DCs pulsed with the specific peptide. Balb/C mice could also be protected from tumour challenge by immunisation with unpulsed DCs prior to challenge with murine mammary tumour cells (410.4) or these cells transfected with MUC1 (E3). Protection was achieved with as few as three injections of 50 000 naïve DCs per mouse per week, was not dependent on injection route, and was not specific to cell lines expressing human MUC1. However, the use of Rag2-knockout mice demonstrated that the adaptive immune response was required for tumour rejection. Injection of unpulsed DCs into mice bearing the E3 tumour slowed tumour growth. In vitro, production of IFN-γ and IL-4 was increased in splenic cells isolated from mice immunised with DCs. Depleting CD4 T cells in vitro partially decreased cytokine production by splenocytes, but CD8 depletion had no effect. This paper shows that naïve syngeneic DCs may induce an antitumour immune response and has implications for DC immunotherapy preclinical and clinical trials
Making a Case for Multi-Disciplinary Analysis
In recent years, I have been drawn to inter-disciplinary approaches to scholarship. Specifically, I have been attracted to “mind studies”—an alluring amalgam of Cognitive Science, Neuroscience, Developmental Psychology, Psychoanalysis, Social Psychology, and Anthropology—as offering more satisfying explanations of human action. In this paper I want to explore more deeply and expound further upon the benefits of multi-disciplinary research. To do so, I’ve invited colleagues of mine who work in other disciplines to view an ethnographic film about a poor Appalachian family and to identify specific issues in it that they would develop further in their classes. My working assumption is that there will be significant variations in what each of us highlights due to differences in the ways we were trained, and that much can be gained pedagogically in assessing the results. In bringing to light some of the limitations of academic overspecialization, the paper hopes to encourage all scholars to venture across disciplinary boundaries more often
- …