1,529 research outputs found

    A periodically active pulsar giving insight into magnetospheric physics

    Get PDF
    PSR B1931+24 (J1933+2421) behaves as an ordinary isolated radio pulsar during active phases that are 5-10 days long. However, the radio emission switches off in less than 10 seconds and remains undetectable for the next 25-35 days, then it switches on again. This pattern repeats quasi-periodically. The origin of this behaviour is unclear. Even more remarkably, the pulsar rotation slows down 50% faster when it is on than when it is off. This indicates a massive increase in magnetospheric currents when the pulsar switches on, proving that pulsar wind plays a substantial role in pulsar spin-down. This allows us, for the first time, to estimate the currents in a pulsar magnetospheric during the occurrence of radio emission.Comment: 12 pages, 2 figure

    Exploring relapse through a network analysis of residual depression and anxiety symptoms after cognitive behavioural therapy : a proof-of-concept study

    Get PDF
    Objective: Many patients relapse within one year of completing effective cognitive behavioural therapy (CBT) for depression and anxiety. Residual symptoms at treatment completion have been demonstrated to predict relapse, and so this study used network analyses to improve specificity regarding which residual anxiety and depression symptoms predict relapse. Method: A cohort study identified relapse cases following low- and high-intensity CBT in a stepped care psychological therapy service. The sample included N=867 ‘recovered’ treatment completers that attended a six-month follow-up review. At follow-up, N=93 patients had relapsed and N=774 remained in-remission. Networks of final treatment session depression (PHQ-9) and anxiety (GAD-7) symptoms were estimated for both sub-groups. Results: Qualitatively similar symptom networks were found. Difficulty concentrating was a highly central symptom in the relapse network, whilst of only average centrality in the remission network. In contrast, trouble relaxing was highly central in the remission network, whilst of only average centrality in the relapse network. Discussion: Identification of central residual symptoms holds promise in improving the specificity of prognostic models and the design of evidence-based relapse prevention strategies. The small sample of relapse cases limits this study’s ability to draw firm conclusions

    Spin-Kick Correlation in Neutron Stars: Alignment Conditions and Implications

    Full text link
    Recent observations of pulsar wind nebulae and radio polarization profiles revealed a tendency of the alignment between the spin and velocity directions in neutron stars. We study the condition for spin-kick alignment using a toy model, in which the kick consists of many off-centered, randomly-oriented thrusts. Both analytical considerations and numerical simulations indicate that spin-kick alignment cannot be easily achieved if the proto-neutron star does not possess some initial angular momentum, contrary to some previous claims. To obtain the observed spin-kick misalignment angle distribution, the initial spin period of the neutron star must be smaller than the kick timescale. Typically, an initial period of a hundred milliseconds or less is required.Comment: 17 pages, 8 figures. Accepted by Ap

    Are Supershells Powered by Multiple Supernovae? Modeling the Radio Pulsar Population Produced by OB Associations

    Full text link
    Traditional searches for radio pulsars have targeted individual small regions such as supernova remnants or globular clusters, or have covered large contiguous regions of the sky. None of these searches has been specifically directed towards giant supershells, some of which are likely to have been produced by multiple supernova (SN) explosions from an OB association. Here we perform a Montecarlo simulation of the pulsar population associated with supershells powered by multiple SNe. We predict that several tens of radio pulsars could be detected with current instruments associated with the largest Galactic supershells (with kinetic energies >~ 10^{53} ergs), and a few pulsars with the smaller ones. We test these predictions for some of the supershells which lie in regions covered by past pulsar surveys. For the smaller supershells, our results are consistent with the few detected pulsars per bubble. For the giant supershell GSH 242-03+37, we find the multiple SN hypothesis inconsistent with current data at the 95% level. We stress the importance of undertaking deep pulsar surveys in correlation with supershells. Failure to detect any pulsar enhancement in the largest of them would put serious constraints on the multiple SN origin for them. Conversely, the discovery of the pulsar population associated with a supershell would allow a different/independent approach to the study of pulsar properties.Comment: accepted to ApJ; 17 pages, 2 figures, 1 tabl

    Long-Term Effects of Alternative Group Selection Harvesting Designs on Stand Production

    Get PDF
    Interest in group selection harvesting has increased in recent years because of limitations associated with both clearcutting and single-tree selection. Field data have suggested that group selection openings can have higher production rates than single-tree gaps, but whether this translates into higher production rates at the stand level is not clear. We used CANOPY, a crown-based northern hardwoods model calibrated with data from uneven-aged and even-aged stands, to simulate sustainable harvest volumes of a number of different group selection approaches over 300 years, and also compared results with those from single-tree selection and clearcutting. When a combination of single-tree and group selection was used with groups making up 3% of the stand area per cutting cycle, net harvestable production rates were similar to those of single-tree selection, and opening size (100-4000m2) had little effect on production rates. As the percentage of the matrix in groups increased from 1 to 9% per cutting cycle, production actually showed a small but consistent decline of about 6 to 7%. When group selection was used alone with no cutting between the groups, production rates varied considerably depending on opening size and rotation age. Small group selection (200 m2) had production rates similar to or slightly higher than single-tree selection, whereas 2000 m2 openings resulted in a production declines of 30 to 35%. Large patch sizes appear to have relatively low net production because of unsalvaged mortality. Similar trends were observed in unthinned even-aged stands compared to those thinned at 15-yr intervals. Although our results confirmed that trees in even-aged stands are more efficient producers than those in uneven-aged stands, there appear to be countervailing tendencies that reduce production rates in large single-cohort patches, including a lag time during the first few decades when production rates of merchantable volume in large openings are very low

    Transverse quasilinear relaxation in inhomogeneous magnetic field

    Get PDF
    Transverse quasilinear relaxation of the cyclotron-Cherenkov instability in the inhomogeneous magnetic field of pulsar magnetospheres is considered. We find quasilinear states in which the kinetic cyclotron-Cherenkov instability of a beam propagating through strongly magnetized pair plasma is saturated by the force arising in the inhomogeneous field due to the conservation of the adiabatic invariant. The resulting wave intensities generally have nonpower law frequency dependence, but in a broad frequency range can be well approximated by the power law with the spectral index -2. The emergent spectra and fluxes are consistent with the one observed from pulsars.Comment: 14 Pages, 4 Figure

    Profile instabilities of the millisecond pulsar PSR J1022+1001

    Get PDF
    We present evidence that the integrated profiles of some millisecond pulsars exhibit severe changes that are inconsistent with the moding phenomenon as known from slowly rotating pulsars. We study these profile instabilities in particular for PSR J1022+1001 and show that they occur smoothly, exhibiting longer time constants than those associated with moding. In addition, the profile changes of this pulsar seem to be associated with a relatively narrow-band variation of the pulse shape. Only parts of the integrated profile participate in this process which suggests that the origin of this phenomenon is intrinsic to the pulsar magnetosphere and unrelated to the interstellar medium. A polarization study rules out profile changes due to geometrical effects produced by any sort of precession. However, changes are observed in the circularly polarized radiation component. In total we identify four recycled pulsars which also exhibit instabilities in the total power or polarization profiles due to an unknown phenomenon (PSRs J1022+1001, J1730-2304, B1821-24, J2145-0750). The consequences for high precision pulsar timing are discussed in view of the standard assumption that the integrated profiles of millisecond pulsars are stable. As a result we present a new method to determine pulse times-of-arrival that involves an adjustment of relative component amplitudes of the template profile. Applying this method to PSR J1022+1001, we obtain an improved timing solution with a proper motion measurement of -17 \pm 2 mas/yr in ecliptic longitude. Assuming a distance to the pulsar as inferred from the dispersion measure this corresponds to an one-dimensional space velocity of 50 km/s.Comment: 29 pages, 12 figures, accepted for publication in Ap

    Young Crab-like pulsars and luminous X-ray sources in starbursts and optically dull galaxies

    Full text link
    Recent Chandra observations of nearby galaxies have revealed a number of ultraluminous X-ray sources (ULXs) with super-Eddington luminosities, away from the central regions of non-active galaxies. The nature of these sources is still debated. We argue that a fraction of them could be young, Crab-like pulsars, the X-ray luminosity of which is powered by rotation. We use the pulsar birth parameters estimated from radio pulsar data to compute the steady-state pulsar X-ray luminosity distribution as a function of the star formation rate (SFR) in the galaxy. We find that ~10% of optically dull galaxies are expected to have a source with L_x >~ 10^{39} erg/s, while starbursts galaxies should each have several of these sources. We estimate that the X-ray luminosity of a few percents of galaxies is dominated by a single bright pulsar with L_x >~10^{39} erg/s, roughly independently of its SFR. We discuss observational diagnostics that can help distinguish the young pulsar population in ULXs.Comment: 17 pages, 4 figures, accepted to Ap

    Discovery of 28 pulsars using new techniques for sorting pulsar candidates

    Full text link
    Modern pulsar surveys produce many millions of candidate pulsars, far more than can be individually inspected. Traditional methods for filtering these candidates, based upon the signal-to-noise ratio of the detection, cannot easily distinguish between interference signals and pulsars. We have developed a new method of scoring candidates using a series of heuristics which test for pulsar-like properties of the signal. This significantly increases the sensitivity to weak pulsars and pulsars with periods close to interference signals. By applying this and other techniques for ranking candidates from a previous processing of the Parkes Multi-beam Pulsar Survey, 28 previously unknown pulsars have been discovered. These include an eccentric binary system and a young pulsar which is spatially coincident with a known supernova remnant.Comment: To be published in Monthly Notices of the Royal Astronomical Society. 11 pages, 9 figure
    • 

    corecore