957 research outputs found

    Dynamics of single polymers under extreme confinement

    Full text link
    We study the dynamics of a single chain polymer confined to a two dimensional cell. We introduce a kinetically constrained lattice gas model that preserves the connectivity of the chain, and we use this kinetically constrained model to study the dynamics of the polymer at varying densities through Monte Carlo simulations. Even at densities close to the fully-packed configuration, we find that the monomers comprising the chain manage to diffuse around the box with a root mean square displacement of the order of the box dimensions over time scales for which the overall geometry of the polymer is, nevertheless, largely preserved. To capture this shape persistence, we define the local tangent field and study the two-time tangent-tangent correlation function, which exhibits a glass-like behavior. In both closed and open chains, we observe reptational motion and reshaping through local fingering events which entail global monomer displacement.Comment: 22 pages, 18 figures, slightly extended version to appear in JSTA

    Geometric Laws of Vortex Quantum Tunneling

    Full text link
    In the semiclassical domain the exponent of vortex quantum tunneling is dominated by a volume which is associated with the path the vortex line traces out during its escape from the metastable well. We explicitly show the influence of geometrical quantities on this volume by describing point vortex motion in the presence of an ellipse. It is argued that for the semiclassical description to hold the introduction of an additional geometric constraint, the distance of closest approach, is required. This constraint implies that the semiclassical description of vortex nucleation by tunneling at a boundary is in general not possible. Geometry dependence of the tunneling volume provides a means to verify experimental observation of vortex quantum tunneling in the superfluid Helium II.Comment: 4 pages, 2 figures, revised version to appear in Phys. Rev.

    Fractional Statistics in Three Dimensions: Compact Maxwell-Higgs System

    Get PDF
    We show that a (3+1)-dimensional system composed of an open magnetic vortex and an electrical point charge exhibits the phenomenon of Fermi-Bose transmutation. In order to provide the physical realization of this system we focus on the lattice compact scalar electrodynamics SQEDcSQED_c whose topological excitations are open Nielsen-Olesen strings with magnetic monopoles attached at their ends.Comment: 8 page

    Extraction of BoNT/A, /B, /E, and /F with a Single, High Affinity Monoclonal Antibody for Detection of Botulinum Neurotoxin by Endopep-MS

    Get PDF
    Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing respiratory failure leading to long-term intensive care or death. The best treatment for botulism includes serotype-specific antitoxins, which are most effective when administered early in the course of the intoxication. Early confirmation of human exposure to any serotype of BoNT is an important public health goal. In previous work, we focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating the seven serotypes (BoNT/A-G) in buffer and BoNT/A, /B, /E, and /F (the four serotypes that commonly affect humans) in clinical samples. We have previously reported the success of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. However, to check for any one of the four serotypes of BoNT/A, /B, /E, or /F, each sample is split into 4 aliquots, and tested for the specific serotypes separately. The discovery of a unique monoclonal antibody that recognizes all four serotypes of BoNT/A, /B, /E and /F allows us to perform simultaneous detection of all of them. When applied in conjunction with the Endopep-MS assay, the detection limit for each serotype of BoNT with this multi-specific monoclonal antibody is similar to that obtained when using other serotype-specific antibodies

    The Abelian Topological Mass Mechanism From Dimensional Reduction

    Get PDF
    We show that the abelian topological mass mechanism in four dimensions, described by the Cremmer-Sherk action, can be obtained from dimensional reduction in five dimensions. Starting from a gauge invariant action in five dimensions, where the dual equivalence between a massless vector field and a massless second-rank antisymmetric field in five dimensions is established, the dimensional reduction is performed keeping only one massive mode. Furthermore, the Kalb-Ramond action and the Stuckelberger formulation for massive spin-1 are recovered.Comment: Three references added, 6 pages, late

    Effects of a torsion field on Big Bang nucleosynthesis

    Full text link
    In this paper it is investigated whether torsion, which arises naturally in most theories of quantum gravity, has observable implications for the Big Bang nucleosynthesis. Torsion can lead to spin flips amongst neutrinos thus turning them into sterile neutrinos. In the early Universe they can alter the helium abundance which is tightly constrained by observations. Here I calculate to what extent torsion of the string theory type leads to a disagreement with the Big Bang nucleosynthesis predictions.Comment: accepted by General Relativity and Gravitatio

    BV formulation of higher form gauge theories in a superspace

    Full text link
    We discuss the extended BRST and anti-BRST symmetry (including shift symmetry) in the Batalin-Vilkovisky (BV) formulation for two and three form gauge theories. Further we develop the superspace formulation for the BV actions for these theories. We show that the extended BRST invariant BV action for these theories can be written manifestly covariant manner in a superspace with one Grassmann coordinate. On the hand a superspace with two Grassmann coordinates are required for a manifestly covariant formulation of the extended BRST and extended anti-BRST invariant BV actions for higher form gauge theories.Comment: 30 pages, No figure, version to appear in EPJ

    Non Abelian BF theories with sources and 2-D gravity

    Get PDF
    We study the interaction of non-Abelian topological BFBF theories defined on two dimensional manifolds with point sources carrying non-Abelian charges. We identify the most general solution for the field equations on simply and multiply connected two-manifolds. Taking the particular choice of the so-called extended Poincar\'e group as the gauge group we discuss how recent discussions of two dimensional gravity models do fit in this formalism.Comment: 20 pages, Latex, To appear in Phys Rev D5

    Vacuum Structure and the Axion Walls in Gluodynamics and QCD with Light Quarks

    Get PDF
    Large N gluodynamics was shown to have a set of metastable vacua with the gluonic domain walls interpolating between them. The walls may separate the genuine vacuum from an excited one, or two excited vacua which are unstable at finite N (here N is the number of colors). One may attempt to stabilize them by switching on the axion field. We study how the light quarks and the axion affect the structure of the domain walls. In pure gluodynamics (with the axion field) the axion walls acquire a very hard gluonic core. Thus, we deal with a wall "sandwich" which is stable at finite N. In the case of the minimal axion, the wall "sandwich" is in fact a "2-pi" wall, i.e., the corresponding field configuration interpolates between identical hadronic vacua. The same properties hold in QCD with three light quarks and very large number of colors. However, in the realistic case of three-color QCD the phase corresponding to the axion field profile in the axion wall is screened by a dynamical phase associated with the eta-prime, so that the gluon component of the wall is not excited. We propose a toy Lagrangian which models these properties and allows one to get exact solutions for the domain walls.Comment: 22 pages Latex, no figure
    • …
    corecore