We study the dynamics of a single chain polymer confined to a two dimensional
cell. We introduce a kinetically constrained lattice gas model that preserves
the connectivity of the chain, and we use this kinetically constrained model to
study the dynamics of the polymer at varying densities through Monte Carlo
simulations. Even at densities close to the fully-packed configuration, we find
that the monomers comprising the chain manage to diffuse around the box with a
root mean square displacement of the order of the box dimensions over time
scales for which the overall geometry of the polymer is, nevertheless, largely
preserved. To capture this shape persistence, we define the local tangent field
and study the two-time tangent-tangent correlation function, which exhibits a
glass-like behavior. In both closed and open chains, we observe reptational
motion and reshaping through local fingering events which entail global monomer
displacement.Comment: 22 pages, 18 figures, slightly extended version to appear in JSTA