37,192 research outputs found

    Forecasts for Low Spin Black Hole Spectroscopy in Horndeski Gravity

    Full text link
    We investigate the prospect of using black hole spectroscopy to constrain the parameters of Horndeski gravity through observations of gravitational waves from perturbed black holes. We study the gravitational waves emitted during ringdown from black holes without hair in Horndeski gravity, demonstrating the qualitative differences between such emission in General Relativity and Horndeski theory. In particular, Quasi-Normal Mode frequencies associated with the scalar field spectrum can appear in the emitted gravitational radiation. Analytic expressions for error estimates for both the black hole and Horndeski parameters are calculated using a Fisher Matrix approach, with constraints on the `effective mass' of the Horndeski scalar field of order ∌10−17\sim 10^{-17}eVc−2c^{-2} or tighter being shown to be achievable in some scenarios. Estimates for the minimum signal-noise-ratio required to observe such a signal are also presented.Comment: Updated to match published versio

    Ultra-Light Scalar Fields and the Growth of Structure in the Universe

    Full text link
    Ultra-light scalar fields, with masses of between m=10^{-33} eV and m=10^{-22} eV, can affect the growth of structure in the Universe. We identify the different regimes in the evolution of ultra-light scalar fields, how they affect the expansion rate of the universe and how they affect the growth rate of cosmological perturbations. We find a number of interesting effects, discuss how they might arise in realistic scenarios of the early universe and comment on how they might be observed.Comment: 12 pages, 11 figure

    Magnetic braking in young late-type stars: the effect of polar spots

    Full text link
    The concentration of magnetic flux near the poles of rapidly rotating cool stars has been recently proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfven radii and larger braking rates than a smoother field distribution. From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.Comment: 11 pages, 10 figures, accepted in A&

    Are Magnetic Wind-Driving Disks Inherently Unstable?

    Full text link
    There have been claims in the literature that accretion disks in which a centrifugally driven wind is the dominant mode of angular momentum transport are inherently unstable. This issue is considered here by applying an equilibrium-curve analysis to the wind-driving, ambipolar diffusion-dominated, magnetic disk model of Wardle & Konigl (1993). The equilibrium solution curves for this class of models typically exhibit two distinct branches. It is argued that only one of these branches represents unstable equilibria and that a real disk/wind system likely corresponds to a stable solution.Comment: 5 pages, 2 figures, to be published in ApJ, vol. 617 (2004 Dec 20). Uses emulateapj.cl

    The 4 Year COBE DMR data is non-Gaussian

    Get PDF
    I review our recent claim that there is evidence of non-Gaussianity in the 4 Year COBE DMR data. I describe the statistic we apply, the result we obtain and make a detailed list of the systematics we have analysed. I finish with a qualitative understanding of what it might be and its implications.Comment: Proceedings of Rome 3K conference, 5 pages, 3 figure

    A covariant approach to parameterised cosmological perturbations

    Full text link
    We present a covariant formulation for constructing general quadratic actions for cosmological perturbations, invariant under a given set of gauge symmetries for a given field content. This approach allows us to analyse scalar, vector and tensor perturbations at the same time in a straightforward manner. We apply the procedure to diffeomorphism invariant single-tensor, scalar-tensor and vector-tensor theories and show explicitly the full covariant form of the quadratic actions in such cases, in addition to the actions determining the evolution of vector and tensor perturbations. We also discuss the role of the symmetry of the background in identifying the set of cosmologically relevant free parameters describing these classes of theories, including calculating the relevant free parameters for an axisymmetric Bianchi-I vacuum universe.Comment: Updated to match published versio

    Information profiles for DNA pattern discovery

    Full text link
    Finite-context modeling is a powerful tool for compressing and hence for representing DNA sequences. We describe an algorithm to detect genomic regularities, within a blind discovery strategy. The algorithm uses information profiles built using suitable combinations of finite-context models. We used the genome of the fission yeast Schizosaccharomyces pombe strain 972 h- for illustration, unveilling locations of low information content, which are usually associated with DNA regions of potential biological interest.Comment: Full version of DCC 2014 paper "Information profiles for DNA pattern discovery

    A multi-flow model for microquasars

    Full text link
    We present a new picture for the central regions of Black Hole X-ray Binaries. In our view, these central regions have a multi-flow configuration which consists in (1) an outer standard accretion disc down to a transition radius r_J, (2) an inner magnetized accretion disc below r_J driving (3) a non relativistic self-collimated electron-proton jet surrounding, when adequate conditions for pair creation are met, (4) a ultra relativistic electron-positron beam. This accretion-ejection paradigm provides a simple explanation to the canonical spectral states, from radio to X/gamma-rays, by varying the transition radius r_J and disc accretion rate independently. Large values of r_J and low accretion rate correspond to Quiescent and Hard states. These states are characterized by the presence of a steady electron-proton MHD jet emitted by the disc below r_J. The hard X-ray component is expect to form at the jet basis. When r_J becomes smaller than the marginally stable orbit r_i, the whole disc resembles a standard accretion disc with no jet, characteristic of the Soft state. Intermediate states correspond to situations where r_J ~ r_i. At large accretion rate, an unsteady pair cascade process is triggered within the jet axis, giving birth to flares and ejection of relativistic pair blobs. This would correspond to the luminous intermediate state, with its associated superluminal motions.Comment: 12 pages, 3 figures. Proceedings of ``High Energies in the Highlands'', Fort-William, 27 June-1 July 200

    Modifying gravity with the Aether: an alternative to Dark Matter

    Get PDF
    There is evidence that Newton and Einstein's theories of gravity cannot explain the dynamics of a universe made up solely of baryons and radiation. To be able to understand the properties of galaxies, clusters of galaxies and the universe on the whole it has become commonplace to invoke the presence of dark matter. An alternative approach is to modify the gravitational field equations to accommodate observations. We propose a new class of gravitational theories in which we add a new degree of freedom, the Aether, in the form of a vector field that is coupled covariantly, but non-minimally, with the space-time metric. We explore the Newtonian and non-Newtonian limits, discuss the conditions for these theories to be consistent and explore their effect on cosmology.Comment: Updated version: Notation improved - TG
    • 

    corecore