We present a new picture for the central regions of Black Hole X-ray
Binaries. In our view, these central regions have a multi-flow configuration
which consists in (1) an outer standard accretion disc down to a transition
radius r_J, (2) an inner magnetized accretion disc below r_J driving (3) a non
relativistic self-collimated electron-proton jet surrounding, when adequate
conditions for pair creation are met, (4) a ultra relativistic
electron-positron beam. This accretion-ejection paradigm provides a simple
explanation to the canonical spectral states, from radio to X/gamma-rays, by
varying the transition radius r_J and disc accretion rate independently. Large
values of r_J and low accretion rate correspond to Quiescent and Hard states.
These states are characterized by the presence of a steady electron-proton MHD
jet emitted by the disc below r_J. The hard X-ray component is expect to form
at the jet basis. When r_J becomes smaller than the marginally stable orbit
r_i, the whole disc resembles a standard accretion disc with no jet,
characteristic of the Soft state. Intermediate states correspond to situations
where r_J ~ r_i. At large accretion rate, an unsteady pair cascade process is
triggered within the jet axis, giving birth to flares and ejection of
relativistic pair blobs. This would correspond to the luminous intermediate
state, with its associated superluminal motions.Comment: 12 pages, 3 figures. Proceedings of ``High Energies in the
Highlands'', Fort-William, 27 June-1 July 200