14,594 research outputs found

    Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey

    Get PDF
    We present luminosity and surface brightness distributions of 40,111 galaxies with K-band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K- and r-band magnitude, K-band surface brightness and K-band radius are included explicitly in the 1/Vmax estimate of the space density and luminosity function. The bivariate brightness distribution in K-band absolute magnitude and surface brightness is presented and found to display a clear luminosity--surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best fitting Schechter function parameters for the K-band luminosity function are found to be M*-5 log h=-23.19 +/- 0.04, alpha=-0.81 +/- 0.04 and phi*=(0.0166 +/- 0.0008)h^3 Mpc^{-3}, although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be j = (6.305 +/- 0.067) x 10^8 L_sun h Mpc^{-3}. However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.Comment: 17 pages, 24 figures, matches MNRAS accepted versio

    Grain boundary motion in layered phases

    Full text link
    We study the motion of a grain boundary that separates two sets of mutually perpendicular rolls in Rayleigh-B\'enard convection above onset. The problem is treated either analytically from the corresponding amplitude equations, or numerically by solving the Swift-Hohenberg equation. We find that if the rolls are curved by a slow transversal modulation, a net translation of the boundary follows. We show analytically that although this motion is a nonlinear effect, it occurs in a time scale much shorter than that of the linear relaxation of the curved rolls. The total distance traveled by the boundary scales as ϵ−1/2\epsilon^{-1/2}, where ϵ\epsilon is the reduced Rayleigh number. We obtain analytical expressions for the relaxation rate of the modulation and for the time dependent traveling velocity of the boundary, and especially their dependence on wavenumber. The results agree well with direct numerical solutions of the Swift-Hohenberg equation. We finally discuss the implications of our results on the coarsening rate of an ensemble of differently oriented domains in which grain boundary motion through curved rolls is the dominant coarsening mechanism.Comment: 16 pages, 5 figure

    Flight test evaluation of a method to determine the level flight performance of a propeller-driven aircraft

    Get PDF
    The overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag, which is generated by a towed drogue. The simplest form of the governing equations, D = delta D SHP/delta SHP, is such that all of the parameters on the right side of the equation can be measured in flight. An evaluation of the governing equations has been performed using data generated by flight test of a Beechcraft T-34B. The simplicity of this technique and its proven applicability to sailplanes and small aircraft is well known. However, the method fails to account for airframe-propulsion system

    An evaluation of the Department of Health’s Health and Social Care Volunteering Fund

    Get PDF
    The Health and Social Care Volunteering Fund (HSCVF) is an innovative programme that was established in 2009 by the Department of Health (DH) to build organisational and community capacity for volunteering through a national and local grant scheme. The HSCVF has offered both funds and tailored support to health and social care projects delivered by Voluntary, Community and Social Enterprise (VCSE) organisations. The HSCVF is managed by a partnership led by Ecorys and with expertise from leading national voluntary sector organisations: Attend, Community Service Volunteers (CSV) and Primetimers. To date the HSCVF has funded a total of 157 local and national projects, of which 114 are currently live. This report presents findings from an evaluation of the HSCVF with a specific focus on the 2010/2011 national and local projects, conducted by a team from the Institute for Health & Wellbeing at Leeds Metropolitan University. It presents evidence on the extent to which, how and in what ways the HSCVF programme has built organisational and community capacity across the national and local HSCVF projects, as well as on the health and social outcomes that resulted

    Effect of the Centrifugal Force on Domain Chaos in Rayleigh-B\'enard convection

    Get PDF
    Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects rotating Rayleigh-B\'enard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly-stationary nearly-radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment and simulation we show that the centrifugal force is responsible for the radial rolls. Furthermore, simulations of the Boussinesq equations for smaller aspect ratios neglecting the centrifugal force yielded a domain precession-frequency f∼ϵμf\sim\epsilon^\mu with μ≃1\mu\simeq1 as predicted by the amplitude-equation model for domain chaos, but contradicted by previous experiment. Additionally the simulations gave a domain size that was larger than in the experiment. When the centrifugal force was included in the simulation, μ\mu and the domain size closely agreed with experiment.Comment: 8 pages, 11 figure

    Defect Dynamics for Spiral Chaos in Rayleigh-Benard Convection

    Full text link
    A theory of the novel spiral chaos state recently observed in Rayleigh-Benard convection is proposed in terms of the importance of invasive defects i.e defects that through their intrinsic dynamics expand to take over the system. The motion of the spiral defects is shown to be dominated by wave vector frustration, rather than a rotational motion driven by a vertical vorticity field. This leads to a continuum of spiral frequencies, and a spiral may rotate in either sense depending on the wave vector of its local environment. Results of extensive numerical work on equations modelling the convection system provide some confirmation of these ideas.Comment: Revtex (15 pages) with 4 encoded Postscript figures appende

    Who Contributes to the Knowledge Sharing Economy?

    Full text link
    Information sharing dynamics of social networks rely on a small set of influencers to effectively reach a large audience. Our recent results and observations demonstrate that the shape and identity of this elite, especially those contributing \emph{original} content, is difficult to predict. Information acquisition is often cited as an example of a public good. However, this emerging and powerful theory has yet to provably offer qualitative insights on how specialization of users into active and passive participants occurs. This paper bridges, for the first time, the theory of public goods and the analysis of diffusion in social media. We introduce a non-linear model of \emph{perishable} public goods, leveraging new observations about sharing of media sources. The primary contribution of this work is to show that \emph{shelf time}, which characterizes the rate at which content get renewed, is a critical factor in audience participation. Our model proves a fundamental \emph{dichotomy} in information diffusion: While short-lived content has simple and predictable diffusion, long-lived content has complex specialization. This occurs even when all information seekers are \emph{ex ante} identical and could be a contributing factor to the difficulty of predicting social network participation and evolution.Comment: 15 pages in ACM Conference on Online Social Networks 201

    Influence of the Dufour effect on convection in binary gas mixtures

    Full text link
    Linear and nonlinear properties of convection in binary fluid layers heated from below are investigated, in particular for gas parameters. A Galerkin approximation for realistic boundary conditions that describes stationary and oscillatory convection in the form of straight parallel rolls is used to determine the influence of the Dufour effect on the bifurcation behaviour of convective flow intensity, vertical heat current, and concentration mixing. The Dufour--induced changes in the bifurcation topology and the existence regimes of stationary and traveling wave convection are elucidated. To check the validity of the Galerkin results we compare with finite--difference numerical simulations of the full hydrodynamical field equations. Furthermore, we report on the scaling behaviour of linear properties of the stationary instability.Comment: 14 pages and 10 figures as uuencoded Postscript file (using uufiles

    Coexistence and competition of local- and long-range polar orders in a ferroelectric relaxor

    Full text link
    We have performed a series of neutron diffuse scattering measurements on a single crystal of the solid solution Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3 (PZN) doped with 8% PbTiO3_3 (PT), a relaxor compound with a Curie temperature TC∼450_C \sim 450 K, in an effort to study the change in local polar orders from the polar nanoregions (PNR) when the material enters the ferroelectric phase. The diffuse scattering intensity increases monotonically upon cooling in zero field, while the rate of increase varies dramatically around different Bragg peaks. These results can be explained by assuming that corresponding changes occur in the ratio of the optic and acoustic components of the atomic displacements within the PNR. Cooling in the presence of a modest electric field E⃗\vec{E} oriented along the [111] direction alters the shape of diffuse scattering in reciprocal space, but does not eliminate the scattering as would be expected in the case of a classic ferroelectric material. This suggests that a field-induced redistribution of the PNR has taken place

    Laboratory to the marketplace: scientific challenges in commercializing a phosphate solubilizing microorganism

    Get PDF
    Non-Peer ReviewedThe commercialization of phosphate inoculant is a challenging process. The active ingredient of the phosphate inoculant JumpStart® (P. bilaiae) was isolated in 1982. Although the concept of P solubilization was proven, much additional research was required. Cost effective manufacturing processes, packaging and QA systems, and easy-to-use, shelf stable formulations needed to be developed. Extensive field research to confirm efficacy was needed. Comprehensive data on compatibility with seed-applied pesticides were required. Development continues to be an on-going process with the use of the product on new crops, improved production methods and formulations, new applications, and continuing market research to monitor changing farmer needs
    • …
    corecore