14,463 research outputs found

    Efficient frequency doubler for the soft X-ray SASE FEL at the TESLA Test Facility

    Full text link
    This paper describes an effective frequency doubler scheme for SASE free electron lasers. It consists of an undulator tuned to the first harmonic, a dispersion section, and a tapered undulator tuned to the second harmonic. The first stage is a conventional soft X-ray SASE FEL. Its gain is controlled in such a way that the maximum energy modulation of the electron beam at the exit is about equal to the local energy spread, but still far away from saturation. When the electron bunch passes through the dispersion section this energy modulation leads to effective compression of the particles. Then the bunched electron beam enters the tapered undulator and produces strong radiation in the process of coherent deceleration. We demonstrate that a frequency doubler scheme can be integrated into the SASE FEL at the TESLA Test Facility at DESY, and will allow to reach 3 nm wavelength with GW-level of output peak power. This would extend the operating range of the FEL into the so-called water window and significantly expand the capabilities of the TTF FEL user facility.Comment: 17 pages, 13 figure

    Deeply Virtual Compton Scattering at HERA

    Get PDF
    Deeply virtual Compton scattering has recently been studied by three HERA experiments, H1, ZEUS and HERMES, covering a broad range of kinematic regimes. We present cross section measurements of the two collider experiments in the kinematic region 2<Q^2<100 GeV^2 and 30<W<140 GeV, and compare them to QCD-based calculations. HERMES measurements of azimuthal asymmetries and their kinematical dependences are presented for Q^2>1 GeV^2 and 2<W<7 GeV.Comment: 4 pages, 8 figures, submitted to ICHEP 2002 proceedings; citations replace

    Equilibrium orbit analysis in a free-electron laser with a coaxial wiggler

    Full text link
    An analysis of single-electron orbits in combined coaxial wiggler and axial guide magnetic fields is presented. Solutions of the equations of motion are developed in a form convenient for computing orbital velocity components and trajectories in the radially dependent wiggler. Simple analytical solutions are obtained in the radially-uniform-wiggler approximation and a formula for the derivative of the axial velocity vv_{\|} with respect to Lorentz factor γ\gamma is derived. Results of numerical computations are presented and the characteristics of the equilibrium orbits are discussed. The third spatial harmonic of the coaxial wiggler field gives rise to group IIIIII orbits which are characterized by a strong negative mass regime.Comment: 13 pages, 9 figures, to appear in phys. rev.

    Ultrasonic Doppler measurement of renal artery blood flow

    Get PDF
    An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported

    Full-field optical measurement of curvatures in ultra-thin-film–substrate systems in the range of geometrically nonlinear deformations

    Get PDF
    This article describes coherent gradient sensing (CGS) as an optical, full-field, real-time, nonintrusive, and noncontact technique for the measurement of curvatures and nonuniform curvature changes in film-substrate systems. The technique is applied to the study of curvature fields in thin Al films (6 mum) deposited on thin circular silicon wafers (105 mum) of "large" in-plane dimensions (50.8 mm in diameter) subjected to thermal loading histories. The loading and geometry is such that the system experiences deformations that are clearly within the nonlinear range. The discussion is focused on investigating the limits of the range of the linear relationship between the thermally induced mismatch strain and the substrate curvature, on the degree to which the substrate curvature becomes spatially nonuniform in the range of geometrically nonlinear deformation, and finally, on the bifurcation of deformation mode from axial symmetry to asymmetry with increasing mismatch strain. Results obtained on the basis of both simple models and more-detailed finite-element simulations are compared with the full-field CGS measurements with the purpose of validating the analytical and numerical models

    Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems

    Full text link
    The operations drip and mate considered in (mem)brane computing resemble the operations cut and recombination well known from DNA computing. We here consider sets of vesicles with multisets of objects on their outside membrane interacting by drip and mate in two different setups: in test tube systems, the vesicles may pass from one tube to another one provided they fulfill specific constraints; in tissue-like P systems, the vesicles are immediately passed to specified cells after having undergone a drip or mate operation. In both variants, computational completeness can be obtained, yet with different constraints for the drip and mate operations

    Studies of a Terawatt X-Ray Free-Electron Laser

    Get PDF
    The possibility of constructing terawatt (TW) x-ray free-electron lasers (FELs) has been discussed using novel superconducting helical undulators [5]. In this paper, we consider the conditions necessary for achieving powers in excess of 1 TW in a 1.5 {\AA} FEL using simulations with the MINERVA simulation code [7]. Steady-state simulations have been conducted using a variety of undulator and focusing configurations. In particular, strong focusing using FODO lattices is compared with the natural, weak focusing inherent in helical undulators. It is found that the most important requirement to reach TW powers is extreme transverse compression of the electron beam in a strong FODO lattice. The importance of extreme focusing of the electron beam in the production of TW power levels means that the undulator is not the prime driver for a TW FEL, and simulations are also described using planar undulators that reach near-TW power levels. In addition, TW power levels can be reached using pure self-amplified spontaneous emission (SASE) or with novel self-seeding configurations when such extreme focusing of the electron beam is applied.Comment: 10 pages, 12 figure

    Elementary Particles and Spin Representations

    Full text link
    We emphasize that the group-theoretical considerations leading to SO(10) unification of electro-weak and strong matter field components naturally extend to space-time components, providing a truly unified description of all generation degrees of freedoms in terms of a single chiral spin representation of one of the groups SO(13,1), SO(9,5), SO(7,7) or SO(3,11). The realization of these groups as higher dimensional space-time symmetries produces unification of all fundamental fermions is a single space-time spinor.Comment: 4 page
    corecore