734 research outputs found

    Optomechanical and Crystallization Phenomena Visualized with 4D Electron Microscopy: Interfacial Carbon Nanotubes on Silicon Nitride

    Get PDF
    With ultrafast electron microscopy (UEM), we report observation of the nanoscopic crystallization of amorphous silicon nitride, and the ultrashort optomechanical motion of the crystalline silicon nitride at the interface of an adhering carbon nanotube network. The in situ static crystallization of the silicon nitride occurs only in the presence of an adhering nanotube network, thus indicating their mediating role in reaching temperatures close to 1000 °C when exposed to a train of laser pulses. Under such condition, 4D visualization of the optomechanical motion of the specimen was followed by quantifying the change in diffraction contrast of crystalline silicon nitride, to which the nanotube network is bonded. The direction of the motion was established from a tilt series correlating the change in displacement with both the tilt angle and the response time. Correlation of nanoscopic motion with the picosecond atomic-scale dynamics suggests that electronic processes initiated in the nanotubes are responsible for the initial ultrafast optomechanical motion. The time scales accessible to UEM are 12 orders of magnitude shorter than those traditionally used to study the optomechanical motion of carbon nanotube networks, thus allowing for distinctions between the different electronic and thermal mechanisms to be made

    Nanofriction Visualized in Space and Time by 4D Electron Microscopy

    Get PDF
    In this letter, we report a novel method of visualizing nanoscale friction in space and time using ultrafast electron microscopy (UEM). The methodology is demonstrated for a nanoscale movement of a single crystal beam on a thin amorphous membrane of silicon nitride. The movement results from the elongation of the crystal beam, which is initiated by a laser (clocking) pulse, and we examined two types of beams: those that are free of friction and the others which are fixed on the substrate. From observations of image change with time we are able to decipher the nature of microscopic friction at the solid−solid interface: smooth-sliding and periodic slip-stick friction. At the molecular and nanoscale level, and when a force parallel to the surface (expansion of the beam) is applied, the force of gravity as a (perpendicular) load cannot explain the observed friction. An additional effective load being 6 orders of magnitude larger than that due to gravity is attributed to Coulombic/van der Waals adhesion at the interface. For the case under study, metal−organic crystals, the gravitational force is on the order of piconewtons whereas the static friction force is 0.5 μN and dynamic friction is 0.4 μN; typical beam expansions are 50 nm/nJ for the free beam and 10 nm/nJ for the fixed beam. The method reported here should have applications for other materials, and for elucidating the origin of periodic and chaotic friction and their relevance to the efficacy of nano(micro)-scale devices

    Irreversible Chemical Reactions Visualized in Space and Time with 4D Electron Microscopy

    Get PDF
    We report direct visualization of irreversible chemical reactions in space and time with 4D electron microscopy. Specifically, transient structures are imaged following electron transfer in copper-tetracyanoquinodimethane [Cu(TCNQ)] crystals, and the oxidation/reduction process, which is irreversible, is elucidated using the single-shot operation mode of the microscope. We observed the fast, initial structural rearrangement due to Cu^+ reduction and the slower growth of metallic Cu^0 nanocrystals (Ostwald ripening) following initiation of the reaction with a pulse of visible light. The mechanism involves electron transfer from TCNQ anion-radical to Cu^+, morphological changes, and thermally driven growth of discrete Cu^0 nanocrystals embedded in an amorphous carbon skeleton of TCNQ. This in situ visualization of structures during reactions should be extendable to other classes of reactive systems

    Enhanced repulsively bound atom pairs in topological optical lattice ladders

    Get PDF
    There is a growing interest in using cold-atom systems to explore the effects of strong interactions in topological band structures. Here we investigate interacting bosons in a Cruetz ladder, which is characterised by topological flat energy bands where it has been proposed that interactions can lead to the formation of bound atomic pairs giving rise to pair superfluidity. By investigating realistic experimental implementations, we understand how the lattice topology enhances the properties of bound pairs giving rise to relatively large effective pair-tunnelling in these systems which can lead to robust pair superfluidity, and we find lattice supersolid phases involving only pairs. We identify schemes for preparation of these phases via time-dependent parameter variation and look at ways to detect and characterise these systems in a lattice. This work provides a starting point for investigating the interplay between the effects of topology, interactions and pairing in more general systems, with potential future connections to quantum simulation of topological materials

    Landscape controls on fuel moisture variability in fire-prone heathland and peatland landscapes

    Get PDF
    Background: Cross-landscape fuel moisture content is highly variable but not considered in existing fire danger assessments. Capturing fuel moisture complexity and its associated controls is critical for understanding wildfire behavior and danger in emerging fire-prone environments that are influenced by local heterogeneity. This is particularly true for temperate heathland and peatland landscapes that exhibit spatial differences in the vulnerability of their globally important carbon stores to wildfire. Here we quantified the range of variability in the live and dead fuel moisture of Calluna vulgaris across a temperate fire-prone landscape through an intensive fuel moisture sampling campaign conducted in the North Yorkshire Moors, UK. We also evaluated the landscape (soil texture, canopy age, aspect, and slope) and micrometeorological (temperature, relative humidity, vapor pressure deficit, and windspeed) drivers of landscape fuel moisture variability for temperate heathlands and peatlands for the first time. Results: We observed high cross-landscape fuel moisture variation, which created a spatial discontinuity in the availability of live fuels for wildfire spread (fuel moisture < 65%) and vulnerability of the organic layer to smoldering combustion (fuel moisture < 250%). This heterogeneity was most important in spring, which is also the peak wildfire season in these temperate ecosystems. Landscape and micrometeorological factors explained up to 72% of spatial fuel moisture variation and were season- and fuel-layer-dependent. Landscape factors predominantly controlled spatial fuel moisture content beyond modifying local micrometeorology. Accounting for direct landscape–fuel moisture relationships could improve fuel moisture estimates, as existing estimates derived solely from micrometeorological observations will exclude the underlying influence of landscape characteristics. We hypothesize that differences in soil texture, canopy age, and aspect play important roles across the fuel layers examined, with the main differences in processes arising between live, dead, and surface/ground fuels. We also highlight the critical role of fuel phenology in assessing landscape fuel moisture variations in temperate environments. Conclusions: Understanding the mechanisms driving fuel moisture variability opens opportunities to develop locally robust fuel models for input into wildfire danger rating systems, adding versatility to wildfire danger assessments as a management tool

    Variability in fire frequency and forest composition in Canada's Southeastern Boreal Forest: A challenge for sustainable forest management

    Get PDF
    Because some consequences of fire resemble the effects of industrial forest harvesting, forest management is often considered as a disturbance having effects similar to those of natural disturbances. Although the analogy between forest management and fire disturbance in boreal ecosystems has some merit, it is important to recognize that it has limitations. First, normal forest rotations truncate the natural forest stand age distribution and eliminate over-mature forests from the landscape. Second, in the boreal mixedwoods, natural forest dynamics following fire may involve a gradual replacement of stands of intolerant broadleaf species by mixedwood and then softwood stands, whereas current silvicultural practices promote successive rotations of similarly composed stands. Third, the large fluctuations observed in fire frequency during the Holocene limit the use of a single fire cycle to characterize natural fire regimes. Short fire cycles generally described for boreal ecosystems do not appear to be universal; rather, shifts between short and long fire cycles have been observed. These shifts imply important changes in forest composition at the landscape and regional levels. All of these factors create a natural variability in forest composition that should be maintained by forest managers concerned with the conservation of biodiversity. One avenue is to develop silvicultural techniques that maintain a spectrum of forest compositions over the landscape

    Practical application of AAPM Report 270 in display quality assurance: A report of Task Group 270

    Get PDF
    Published in January 2019, AAPM Report 270 provides an update to the recommendations of the AAPM\u27s TG18 report. Report 270 provides new definitions of display types, updated testing patterns, and revised performance standards for the modern, flat-panel displays used as part of medical image acquisition and review. The focus of the AAPM report is on consistent image quality and appearance, and how to establish a quality assurance program to achieve those two goals. This work highlights some of the key takeaways of AAPM Report 270 and makes comparisons with existing recommendations from other references. It also provides guidance for establishing a display quality assurance program for different-sized institutions. Finally, it describes future challenges for display quality assurance and what work remains
    • …
    corecore