19 research outputs found

    Discrete element modelling of scaled railway ballast under triaxial conditions

    Get PDF
    The aim of this study is to demonstrate the use of tetrahedral clumps to model scaled railway ballast using the discrete element method (DEM). In experimental triaxial tests, the peak friction angles for scaled ballast are less sensitive to the confining pressure when compared to full-sized ballast. This is presumed to be due to the size effect on particle strength, whereby smaller particles are statistically stronger and exhibit less abrasion. To investigate this in DEM, the ballast is modelled using clumps with breakable asperities to produce the correct volumetric deformation. The effects of the quantity and properties of these asperities are investigated, and it is shown that the strength affects the macroscopic shear strength at both high and low confining pressures, while the effects of the number of asperities diminishes with increasing confining pressure due to asperity breakage. It is also shown that changing the number of asperities only affects the peak friction angle but not the ultimate friction angle by comparing the angles of repose of samples with different numbers of asperities

    Towards stochastic discrete element modelling of spherical particles with surface roughness: A normal interaction law

    Get PDF
    The current work is the first attempt towards establishing a stochastic discrete element modelling framework by developing a normal contact interaction law based on the classic Greenwood and Williamson (GW) model for spheres with rough surfaces. Two non-dimensional forms of the model that have a substantial impact on the computational efficiency are discussed and the theoretical relationship between the GW model and the Hertzian model for smooth spheres is formally established. Due to the inter-dependence between the contact pressure and deformation distributions in the model, a Newton-Raphson based iterative solution procedure is proposed to effectively and accurately obtain the contact force in terms of the overlap and two surface roughness parameters. The related key components of the procedure are addressed in detail. The numerical results obtained are first validated and then curve-fitted to derive an empirical formula as a new normal interaction law for spheres with surface roughness. The explicit nature of the new interaction law makes it readily be incorporated into the current discrete element modelling framework. A simple example is presented to illustrate the effect of surface roughness on the packing behaviour of a particle assembly

    Comparison of performance of concrete and steel sleepers using experimental and discrete element methods

    No full text
    Experimental and numerical discrete element analyses have been performed to investigate trackbed behaviour for concrete mono-block and steel sleepers. For the laboratory and numerical approaches considered, ballast settlement as well as ballast-subgrade interface pressure is measured. Consideration is also given to the steel sleeper installation process by the comparison of a statically driven steel sleeper to a wished-in-place configuration
    corecore