63 research outputs found

    Estrogen-like activity of seafood related to environmental chemical contaminants

    Get PDF
    BACKGROUND: A wide variety of environmental pollutants occur in surface waters, including estuarine and marine waters. Many of these contaminants are recognised as endocrine disrupting chemicals (EDCs) which can adversely affect the male and female reproductive system by binding the estrogen receptor and exhibiting hormone-like activities. In this study the estrogenic activity of extracts of edible marine organisms for human consumption from the Mediterranean Sea was assayed. METHODS: Marine organisms were collected in two different areas of the Mediterranean Sea. The estrogenic activity of tissues was assessed using an in vitro yeast reporter gene assay (S. cerevisiae RMY 326 ER-ERE). Concentrations of polychlorinated biphenyls (PCBs) (congeners 28, 52, 101, 118, 138, 153, 180) in fish tissue was also evaluated. RESULTS: Thirty-eight percent of extracts showed a hormone-like activity higher than 10% of the activity elicited by 10 nM 17b-estradiol (E2) used as control. Total PCB concentrations ranged from 0.002 up to 1.785 ng/g wet weight. Chemical analyses detected different levels of contamination among the species collected in the two areas, with the ones collected in the Adriatic Sea showing concentrations significantly higher than those collected in the Tyrrhenian Sea (p < 0.01). CONCLUSION: The more frequent combination of chemicals in the samples that showed higher estrogenic activity was PCB 28, PCB 101, PCB 153, PCB 180. The content of PCBs and estrogenic activity did not reveal any significant correlation

    Neuropsychological effects of chronic low-dose exposure to polychlorinated biphenyls (PCBs): A cross-sectional study

    Get PDF
    BACKGROUND: Exposure to indoor air of private or public buildings contaminated with polychlorinated biphenyls (PCBs) has raised health concerns in long-term users. This exploratory neuropsychological group study investigated the potential adverse effects of chronic low-dose exposure to specific air-borne low chlorinated PCBs on well-being and behavioral measures in adult humans. METHODS: Thirty employees exposed to indoor air contaminated with PCBs from elastic sealants in a school building were compared to 30 non-exposed controls matched for education and age, controlling for gender (age range 37–61 years). PCB exposure was verified by external exposure data and biological monitoring (PCB 28, 101, 138, 153, 180). Subjective complaints, learning and memory, executive function, and visual-spatial function was assessed by standardized neuropsychological testing. Since exposure status depended on the use of contaminated rooms, an objectively exposed subgroup (N = 16; PCB 28 = 0.20 ÎŒg/l; weighted exposure duration 17.9 ± 7 years) was identified and compared with 16 paired controls. RESULTS: Blood analyses indicated a moderate exposure effect size (d) relative to expected background exposure for total PCB (4.45 ± 2.44 ÎŒg/l; d = 0.4). A significant exposure effect was found for the low chlorinated PCBs 28 (0.28 ± 0.25 ÎŒg/l; d = 1.5) and 101 (0.07 ± 0.09 ÎŒg/l; d = 0.7). Although no neuropsychological effects exceeded the adjusted significance level, estimation statistics showed elevated effect sizes for several variables. The objectively exposed subgroup showed a trend towards increased subjective attentional and emotional complaints (tiredness and slowing of practical activities, emotional state) as well as attenuated attentional performance (response shifting and alertness in a cued reaction task). CONCLUSION: Chronic inhalation of low chlorinated PCBs that involved elevated blood levels was associated with a subtle attenuation of emotional well-being and attentional function. Extended research is needed to replicate the potential long-term low PCB effects in a larger sample

    Facing the Challenge of Data Transfer from Animal Models to Humans: the Case of Persistent Organohalogens

    Get PDF
    A well-documented fact for a group of persistent, bioaccumulating organohalogens contaminants, namely polychlorinated biphenyls (PCBs), is that appropriate regulation was delayed, on average, up to 50 years. Some of the delay may be attributed to the fact that the science of toxicology was in its infancy when PCBs were introduced in 1920's. Nevertheless, even following the development of modern toxicology this story repeats itself 45 years later with polybrominated diphenyl ethers (PBDEs) another compound of concern for public health. The question is why? One possible explanation may be the low coherence between experimental studies of toxic effects in animal models and human studies. To explore this further, we reviewed a total of 807 PubMed abstracts and full texts reporting studies of toxic effects of PCB and PBDE in animal models. Our analysis documents that human epidemiological studies of PBDE stand to gain little from animal studies due to the following: 1) the significant delay between the commercialisation of a substance and studies with animal models; 2) experimental exposure levels in animals are several orders of magnitude higher than exposures in the general human population; 3) the limited set of evidence-based endocrine endpoints; 4) the traditional testing sequence (adult animals – neonates – foetuses) postpones investigation of the critical developmental stages; 5) limited number of animal species with human-like toxicokinetics, physiology of development and pregnancy; 6) lack of suitable experimental outcomes for the purpose of epidemiological studies. Our comparison of published PCB and PBDE studies underscore an important shortcoming: history has, unfortunately, repeated itself. Broadening the crosstalk between the various branches of toxicology should therefore accelerate accumulation of data to enable timely and appropriate regulatory action

    Cadmium‐induced toxicity increases prolyl endopeptidase (PREP) expression in the rat testis

    No full text
    During the differentiation of the male gamete, there is a massive remodeling in the shape and architecture of all the cells of the seminiferous epithelium. The cytoskeleton, as well as many associated proteins with it, plays a pivotal role in this process. The testis is particularly susceptible to environmental pollutant, which can lead to injury and impairment of normal spermatozoa production. Cadmium (Cd) is one of the major chemical environmental toxicants in economically developed countries. Food and cigarettes are the main sources of exposure to this element. Here, the protective role of zinc (Zn) to prevent the testicular toxicity in male adult rats after prenatal and during lactation exposure to Cd has been assessed. Altered testicular histology at the interstitial and germinal levels was found, whereas Zn supply completely corrected Cd toxicity. Moreover, the effects of these metals on the testicular expression and localization of the protease prolyl endopeptidase (PREP) were evaluated. Interestingly, the results showed an increase of PREP messenger RNA and protein. Data were corroborated by immunofluorescence. This study raises the possibility of using PREP as a new fertility marker

    Polychlorinated Biphenyls in Residential Dust: Sources of Variability

    No full text
    We characterized the variability in concentrations of polychlorinated biphenyls (PCBs) measured in residential dust. Vacuum cleaner samples were collected from 289 homes in the California Childhood Leukemia Study during two sampling rounds from 2001 to 2010 and 15 PCBs were measured by high resolution gas chromatography–mass spectrometry. Median concentrations of the most abundant PCBs (i.e., PCBs 28, 52, 101, 105, 118, 138, 153, and 180) ranged from 1.0–5.8 ng per g of dust in the first sampling round and from 0.8–3.4 ng/g in the second sampling round. For each of these eight PCBs, we used a random-effects model to apportion total variation into regional variability (6–11%), intra-regional between-home variability (27–56%), within-home variability over time (18–52%), and within-sample variability (9–16%). In mixed-effects models, differences in PCB concentrations between homes were explained by home age, with older homes having higher PCB levels. Differences in PCB concentrations within homes were explained by decreasing time trends. Estimated half-lives ranged from 5–18 years, indicating that PCBs are removed very slowly from the indoor environment. Our findings suggest that it may be feasible to use residential dust for retrospective assessment of PCB exposures in studies of children’s health
    • 

    corecore