291 research outputs found

    Hydrodynamic simulations of ion-beam heated foils for opacity measurements at FAIR

    Get PDF

    New laser energy deposition algorithm for the RALEF-2D code

    Get PDF

    Conventional and Molecular Typing of Salmonella enterica serotype Typhi Locally Isolated In Baghdad

    Get PDF
    Phenotypic And genotypic characteristics of Salmonella enterica serotype Typhi have been determined for 29 isolates, from Baghdad in 2007. Conventional typing methods were performed by biochemical tests, and antimicrobial susceptibility test. Molecular typing performed by analysis plasmid DNA beside using the Random Amplified Polymorphic DNA (RAPD-PCR). For the latter, two universal primers that have selected for the high discriminatory power were used for RAPD analysis. All isolates were belong one biotype according to the differention by their ability to decarboxylat lysine, 29(100%) were lysine (+). All the isolates were susceptible to the Antibiotics used. However, all the strains free of plasmids. RAPD was capable of grouping the strains in 6 genotypic patterns using primer 784, in 4 genotypic patterns using primer 787. Conventional phenotypic typing methods, as well as the DNA plasmid analysis, presented non significant discriminatory power; however, RAPD-PCR analysis showed discriminatory power, reproducibility, easy interpretation and can be considered as a promising alternative typing method for S. Typhi

    Probing Reactivity and Substrate Specificity of Both Subunits of the Dimeric \u3ci\u3eMycobacterium tuberculosis\u3c/i\u3e FabH Using alkyl-CoA Disulfide Inhibitors and acyl-CoA Substrates

    Get PDF
    The dimeric Mycobacterium tuberculosis FabH (mtFabH) catalyses a Claisen-type condensation between an acyl-CoA and malonyl-acyl carrier protein (ACP) to initiate the Type II fatty acid synthase cycle. To analyze the initial covalent acylation of mtFabH with acyl-CoA, we challenged it with mixture of C6-C20 acyl-CoAs and the ESI-MS analysis showed reaction at both subunits and a strict specificity for C12 acyl CoA. Crystallographic and ESI-MS studies of mtFabH with a decyl-CoA disulfide inhibitor revealed a decyl chain bound in acyl-binding channels of both subunits through disulfide linkage to the active site cysteine. These data provide the first unequivocal evidence that both subunits of mtFabH can react with substrates or inhibitor. The discrepancy between the observed C12 acyl-CoA substrate specificity in the initial acylation step and the higher catalytic efficiency of mtFabH for C18-C20 acyl-CoA substrates in the overall mtFabH catalyzed reaction suggests a role for M. tuberculosis ACP as a specificity determinant in this reaction

    Separate Entrance and Exit Portals for Ligand Traffic in Mycobacterium tuberculosis FabH

    Get PDF
    SummaryMycobacterium tuberculosis FabH initiates type II fatty acid synthase-catalyzed formation of the long chain (C16–C22) acyl-coenzyme A (CoA) precursors of mycolic acids, which are major constituents of the bacterial cell envelope. Crystal structures of M. tuberculosis FabH (mtFabH) show the substrate binding site to be a buried, extended L-shaped channel with only a single solvent access portal. Entrance of an acyl-CoA substrate through the solvent portal would require energetically unfavorable reptational threading of the substrate to its reactive position. Using a class of FabH inhibitors, we have tested an alternative hypothesis that FabH exists in an “open” form during substrate binding and product release, and a “closed” form in which catalysis and intermediate steps occur. This hypothesis is supported by mass spectrometric analysis of the product profile and crystal structures of complexes of mtFabH with these inhibitors
    • …
    corecore