757 research outputs found

    The benefits of synchronous collaborative information visualization: evidence from an experimental evaluation

    Get PDF
    A great corpus of studies reports empirical evidence of how information visualization supports comprehension and analysis of data. The benefits of visualization for synchronous group knowledge work, however, have not been addressed extensively. Anecdotal evidence and use cases illustrate the benefits of synchronous collaborative information visualization, but very few empirical studies have rigorously examined the impact of visualization on group knowledge work. We have consequently designed and conducted an experiment in which we have analyzed the impact of visualization on knowledge sharing in situated work groups. Our experimental study consists of evaluating the performance of 131 subjects (all experienced managers) in groups of 5 (for a total of 26 groups), working together on a real-life knowledge sharing task. We compare (1) the control condition (no visualization provided), with two visualization supports: (2) optimal and (3) suboptimal visualization (based on a previous survey). The facilitator of each group was asked to populate the provided interactive visual template with insights from the group, and to organize the contributions according to the group consensus. We have evaluated the results through both objective and subjective measures. Our statistical analysis clearly shows that interactive visualization has a statistically significant, objective and positive impact on the outcomes of knowledge sharing, but that the subjects seem not to be aware of this. In particular, groups supported by visualization achieved higher productivity, higher quality of outcome and greater knowledge gains. No statistically significant results could be found between an optimal and a suboptimal visualization though (as classified by the pre-experiment survey). Subjects also did not seem to be aware of the benefits that the visualizations provided as no difference between the visualization and the control conditions was found for the self-reported measures of satisfaction and participation. An implication of our study for information visualization applications is to extend them by using real-time group annotation functionalities that aid in the group sense making process of the represented data

    Planetary Protection Considerations in EVA System Design

    Get PDF
    To better constrain their origin, we have performed systematic studies of the siderophile element distribution in metal from Enstatite achondrites and iron-rich meteorites linked to Enstatite achondrites. Humayun (2010) reported 20 siderophile elements in the metal of Horse Creek, Mt. Egerton and Tucson, three iron meteorites known for their high Si content in their metal. The Horse Creek and Mt. Egerton irons have elemental patterns identical to metallic solids derived from partially molten enstatite chondrites. Tucson has an unusual siderophile element pattern that is reminiscent of IVA irons, except for the most volatile siderophiles with condensation temperatures below that of Cu (Sb, Ge, Sn) which are more depleted. The origin of Tucson metal is likely linked to an impact involving a reduced chondritic body that provided the silicates, and IVA iron. In a related study, van Acken et al. (2010) reported siderophile element abundances in metal and sulfides from aubrites, chondritic inclusions in aubrites, and other enstatite achondrites (including a separate section of Mt. Egerton). They found that aubrite metal was linked to metal in enstatite chondrites by low degree partial melting forming sulfur-rich metallic liquids. A restite origin of aubrites is not consistent with these metal compositions. The link between the metal compositions and cumulate silicates is not simple. The metal must have been incorporated from enstatite chondritic material that was assimilated by the aubrite magma. A manuscript is in preparation (van Acken et al., 2010). In a related study, van Acken et al. (2010, submitted) reported new precise Os isotope ratios and highly siderophile element abundances in Enstatite chondrites, Enstatite achondrites, Rumurutite chondrites to explore the range of nucleosynthetic variation in s-process Os. They observed nucleosynthetic anomalies, deficiencies of s-process Os, in most primitive enstatite chondrites, but showed the Rumurutite chondrites have very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs

    A Structured Approach for Designing Collaboration Experiences for Virtual Worlds

    Get PDF
    While 3D virtual worlds are more frequently being used as interactive environments for collaboration, there is still no structured approach developed specifically for the combined design of 3D virtual environments and the collaborative activities in them. We argue that formalizing both the structural elements of virtual worlds and aspects of collaborative work or collaborative learning helps to develop fruitful collaborative work and learning experiences. As such, we present the avatar-based collaboration framework (ABC framework). Based on semiotics theory, the framework puts the collaborating groups into the center of the design and emphasizes the use of distinct features of 3D virtual worlds for use in collaborative learning environments and activities. In developing the framework, we have drawn from best practices in instructional design and game design, research in HCI, and findings and observations from our own empirical research that investigates collaboration patterns in virtual worlds. Along with the framework, we present a case study of its first application for a global collaborative learning project. This paper particularly addresses virtual world designers, educators, meeting facilitators, and other practitioners by thoroughly describing the process of creating rich collaboration and collaborative learning experiences for virtual worlds with the ABC framework

    Desert Research and Technology Study 2003 Trip Report/ICES Paper

    Get PDF
    The Advanced Extra-vehicular Activity (EVA) team of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) participated in the Desert Research and Technology Study (RATS) in September 2003, at Meteor Crater, AZ. The Desert RATS is an integrated remote field site te t with team members from several NASA centers (Johnson Space Center; Glenn and Ames Research Centers) and universities (Bowling Green State University, University of Cincinnati, Massachusetts Institute of Technology) participating. Each week of the two-week field test had a primary focus. The primary test hardware for the first week was the I-Gravity Lunar Rover Training Vehicle, or Grover, which was on loan to NASA from the United States Geological Survey (USGS) Astrogeology Research Program. The 2003 Grover driving test results serve as a rover performance characterization baseline for the Science, Crew, Operation and Utility Testbed (SCOUT) project team, which will be designing and fabricating a next generation roving vehicle prototype in Fiscal Year (FY) 2004. The second week of testing focused on EVA geologic traverses that utilized a geologic sample field analysis science trailer and also focused on human-robotic interaction between the suited subjects and the EVA Robotic Assistant (ERA). This paper will review the Advanced EVA team's role in the context of the overall Desert RATS, as well as the EVA team results and lessons learned. For information regarding other test participants' results, the authors can refer interested parties to the test reports produced by those Desert RATS teams

    Differential Increase in Taurine Levels by Low-Dose Ethanol in the Dorsal and Ventral Striatum Revealed by Microdialysis With On-Line Capillary Electrophoresis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66164/1/01.ALC.0000131979.78003.34.pd

    Desert Rats 2010 Operations Tests: Insights from the Geology Crew Members

    Get PDF
    Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of NASA hardware and operations deployed in the high desert of Arizona. Conducted annually since 1997, these activities exercise planetary surface hardware and operations in relatively harsh conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems, they also stress communications and operations systems and enable testing of science operations approaches that advance human and robotic surface exploration capabilities. Desert RATS 2010 tested two crewed rovers designed as first-generation prototypes of small pressurized vehicles, consistent with exploration architecture designs. Each rover provided the internal volume necessary for crewmembers to live and work for periods up to 14 days, as well as allowing for extravehicular activities (EVAs) through the use of rear-mounted suit ports. The 2010 test was designed to simulate geologic science traverses over a 14-day period through a volcanic field that is analogous to volcanic terrains observed throughout the Solar System. The test was conducted between 31 August and 13 September 2010. Two crewmembers lived in and operated each rover for a week with a "shift change" on day 7, resulting in a total of eight test subjects for the two-week period. Each crew consisted of an engineer/commander and an experienced field geologist. Three of the engineer/commanders were experienced astronauts with at least one Space Shuttle flight. The field geologists were drawn from the scientific community, based on funded and published field expertise

    Conducting Planetary Field Geology on EVA: Lessons from the 2010 DRATS Geologist Crewmembers

    Get PDF
    In order to prepare for the next phase of planetary surface exploration, the Desert Research and Technology Studies (DRATS) field program seeks to test the next generation of technology needed to explore other surfaces. The 2010 DRATS 14-day field campaign focused on the simultaneous operation of two habitatable rovers, or Space Exploration Vehicles (SEVs). Each rover was crewed by one astronaut/commander and one geologist, with a change in crews on day seven of the mission. This shift change allowed for eight crew members to test the DRATS technology and operational protocols [1,2]. The insights presented in this abstract represent the crew s thoughts on lessons learned from this field season, as well as potential future testing concepts

    Lessons Learned for Geologic Data Collection and Sampling: Insights from the Desert RATS 2010 Geologist Crewmembers

    Get PDF
    Since 1997, Desert Research and Technology Studies (D-RATS) has conducted hardware and operations tests in the Arizona desert that advance human and robotic planetary exploration capabilities. D-RATS 2010 (8/31-9/13) simulated geologic traverses through a terrain of cinder cones, lava flows, and underlying sedimentary units using a pair of crewed rovers and extravehicular activities (EVAs) for geologic fieldwork. There were two sets of crews, each consisting of an engineer/commander and an experienced field geologist drawn from the academic community. A major objective of D-RATS was to examine the functions of a science support team, the roles of geologist crewmembers, and protocols, tools, and technologies needed for effective data collection and sample documentation. Solutions to these problems must consider how terrestrial field geology must be adapted to geologic fieldwork during EVA

    Towards a Lagrange-Newton approach for PDE constrained shape optimization

    Full text link
    The novel Riemannian view on shape optimization developed in [Schulz, FoCM, 2014] is extended to a Lagrange-Newton approach for PDE constrained shape optimization problems. The extension is based on optimization on Riemannian vector space bundles and exemplified for a simple numerical example.Comment: 16 pages, 4 figures, 1 tabl
    • …
    corecore