428 research outputs found

    Criticality and Bifurcation in the Gravitational Collapse of a Self-Coupled Scalar Field

    Get PDF
    We examine the gravitational collapse of a non-linear sigma model in spherical symmetry. There exists a family of continuously self-similar solutions parameterized by the coupling constant of the theory. These solutions are calculated together with the critical exponents for black hole formation of these collapse models. We also find that the sequence of solutions exhibits a Hopf-type bifurcation as the continuously self-similar solutions become unstable to perturbations away from self-similarity.Comment: 18 pages; one figure, uuencoded postscript; figure is also available at http://www.physics.ucsb.edu/people/eric_hirschman

    Formation and Structure of a Current Sheet in Pulsed-Power Driven Magnetic Reconnection Experiments

    Get PDF
    We describe magnetic reconnection experiments using a new, pulsed-power driven experimental platform in which the inflows are super-sonic but sub-Alfv\'enic.The intrinsically magnetised plasma flows are long lasting, producing a well-defined reconnection layer that persists over many hydrodynamic time scales.The layer is diagnosed using a suite of high resolution laser based diagnostics which provide measurements of the electron density, reconnecting magnetic field, inflow and outflow velocities and the electron and ion temperatures.Using these measurements we observe a balance between the power flow into and out of the layer, and we find that the heating rates for the electrons and ions are significantly in excess of the classical predictions. The formation of plasmoids is observed in laser interferometry and optical self-emission, and the magnetic O-point structure of these plasmoids is confirmed using magnetic probes.Comment: 14 pages, 12 figures. Accepted for publication in Physics of Plasma

    Solving the Simplest Theory of Quantum Gravity

    Full text link
    We solve what is quite likely the simplest model of quantum gravity, the worldsheet theory of an infinitely long, free bosonic string in Minkowski space. Contrary to naive expectations, this theory is non-trivial. We illustrate this by constructing its exact factorizable S-matrix. Despite its simplicity, the theory exhibits many of the salient features expected from more mature quantum gravity models, including the absence of local off-shell observables, a minimal length, a maximum achievable (Hagedorn) temperature, as well as (integrable relatives of) black holes. All these properties follow from the exact S-matrix. We show that the complete finite volume spectrum can be reconstructed analytically from this S-matrix with the help of the thermodynamic Bethe Ansatz. We argue that considered as a UV complete relativistic two-dimensional quantum field theory the model exhibits a new type of renormalization group flow behavior, "asymptotic fragility". Asymptotically fragile flows do not originate from a UV fixed point.Comment: 32+4 pages, 1 figure, v2: typos fixed, published versio

    On homothetic cosmological dynamics

    Get PDF
    We consider the homogeneous and isotropic cosmological fluid dynamics which is compatible with a homothetic, timelike motion, equivalent to an equation of state ρ+3P=0\rho + 3P = 0. By splitting the total pressure PP into the sum of an equilibrium part pp and a non-equilibrium part Π\Pi, we find that on thermodynamical grounds this split is necessarily given by p=ρp = \rho and Π=−(4/3)ρ\Pi = - (4/3)\rho, corresponding to a dissipative stiff (Zel'dovich) fluid.Comment: 8 pages, to be published in Class. Quantum Gra

    An Experimental Platform for Pulsed-Power Driven Magnetic Reconnection

    Get PDF
    We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on exploding wire arrays driven in parallel [Suttle, L. G. et al. PRL, 116, 225001]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer which forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes, and asymmetric reconnection.Comment: 14 pages, 9 figures. Version revised to include referee's comments. Submitted to Physics of Plasma

    The state space and physical interpretation of self-similar spherically symmetric perfect-fluid models

    Full text link
    The purpose of this paper is to further investigate the solution space of self-similar spherically symmetric perfect-fluid models and gain deeper understanding of the physical aspects of these solutions. We achieve this by combining the state space description of the homothetic approach with the use of the physically interesting quantities arising in the comoving approach. We focus on three types of models. First, we consider models that are natural inhomogeneous generalizations of the Friedmann Universe; such models are asymptotically Friedmann in their past and evolve fluctuations in the energy density at later times. Second, we consider so-called quasi-static models. This class includes models that undergo self-similar gravitational collapse and is important for studying the formation of naked singularities. If naked singularities do form, they have profound implications for the predictability of general relativity as a theory. Third, we consider a new class of asymptotically Minkowski self-similar spacetimes, emphasizing that some of them are associated with the self-similar solutions associated with the critical behaviour observed in recent gravitational collapse calculations.Comment: 24 pages, 12 figure

    The TIGA technique for detecting gravitational waves with a spherical antenna

    Get PDF
    We report the results of a theoretical and experimental study of a spherical gravitational wave antenna. We show that it is possible to understand the data from a spherical antenna with 6 radial resonant transducers attached to the surface in the truncated icosahedral arrangement. We find that the errors associated with small deviations from the ideal case are small compared to other sources of error, such as a finite signal-to-noise ratio. An in situ measurement technique is developed along with a general algorithm that describes a procedure for determining the direction of an external force acting on the antenna, including the force from a gravitational wave, using a combination of the transducer responses. The practicality of these techniques was verified on a room-temperature prototype antenna.Comment: 15 pages, 14 figures, submitted to Physical Review

    The physical gravitational degrees of freedom

    Full text link
    When constructing general relativity (GR), Einstein required 4D general covariance. In contrast, we derive GR (in the compact, without boundary case) as a theory of evolving 3-dimensional conformal Riemannian geometries obtained by imposing two general principles: 1) time is derived from change; 2) motion and size are relative. We write down an explicit action based on them. We obtain not only GR in the CMC gauge, in its Hamiltonian 3 + 1 reformulation but also all the equations used in York's conformal technique for solving the initial-value problem. This shows that the independent gravitational degrees of freedom obtained by York do not arise from a gauge fixing but from hitherto unrecognized fundamental symmetry principles. They can therefore be identified as the long-sought Hamiltonian physical gravitational degrees of freedom.Comment: Replaced with published version (minor changes and added references

    Randomized controlled trial to assess the effectiveness of a videotape about radiotherapy

    Get PDF
    In a randomized controlled trial, the additional provision of information on videotape was no more effective than written information alone in reducing pre-treatment worry about radiotherapy. Images of surviving cancer patients, however, may provide further reassurance to patients once therapy is completed. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Gravitational dipole radiations from binary systems

    Get PDF
    We investigate the possibility of generating sizeable dipole radiations in relativistic theories of gravity. Optimal parameters to observe their effects through the orbital period decay of binary star systems are discussed. Constraints on gravitational couplings beyond general relativity are derived.Comment: One comment added, accepted for publication in Phys. Rev.
    • 

    corecore