737 research outputs found

    Fluid and Halide Melt Inclusions of Magmatic Origin in the Ultramafic and Lower Banded Series, Stillwater Complex, Montana, USA

    Get PDF
    Fluid and melt inclusions trapped in igneous rocks below the platinum-group element (PGE)-rich J-M reef in the Stillwater Complex, Montana provide a physiochemical record of a continuum of high P-T magmatic-hydrothermal and low P-T metamorphic events. Magmatic-hydrothermal volatiles ranged from NaCl-dominated halide melts (>82 wt % NaClequiv) to more complex Na-Ca-K-Fe-Mn-Ba-Si-Al-Cl brines (28-79 wt % NaClequiv) that were trapped simultaneously with a moderate density carbonic fluid (CO2 ± CH4). Early primary inclusions containing immiscible brine and carbonic fluid were trapped in the granophyric albite-quartz core of a zoned pegmatite body in the Gabbronorite I unit at T of ∼ 700-715°C, and P between 4·3 and 5·6 kbar. The pegmatitic body crystallized from a fluid-saturated residual silicate liquid that was channeled through the cooling igneous stratigraphy. Approximately 500 m stratigraphically below the pegmatite, in the Ultramafic Series, early halide melt inclusions representing samples of formerly molten NaCl were trapped in unaltered primary olivine over a minimum range in temperature of 660-800°C. In the same olivine that hosts the halide melt inclusions, secondary brine inclusions with a composition similar to brines in the pegmatite were trapped over a minimum temperature range of 480-640°C. As hydrothermal activity continued during post-solidus cooling of the intrusion, quartz precipitation in the vuggy core of the pegmatite body trapped post-magmatic, immiscible brine and carbonic fluid inclusion assemblages that record a progressive decrease in fluid salinity, T and confining P from lithostatic to near-hydrostatic conditions. Late secondary inclusions containing regional metamorphic fluids were trapped in quartz in the pegmatite after cooling to zeolite-facies conditions. The late metamorphic fluids were low to moderate salinity, CaCl2-MgCl2-H2O solutions. Hydrous salt melts, magmatic brines, and non aqueous (carbonic) fluids may have coexisted and interacted throughout much of the late crystallization and post-magmatic history of the Stillwater Complex. Hence, the potential for interaction between exsolved magmatic volatiles and grain boundary-hosted sulfide minerals below the J-M reef at near-solidus temperatures, and the post-magmatic modification of the J-M reef PGE ore compositions by hydrothermal fluids are strongly indicate

    Atmospheric conditions and their effect on ball-milled magnesium diboride

    Full text link
    Magnesium diboride bulk pellets were fabricated from pre-reacted MgB2 powder ball milled with different amounts of exposure to air. Evidence of increased electron scattering including increased resistivity, depressed Tc, and enhanced Hc2 of the milled and heat treated samples were observed as a result of increased contact with air. These and other data were consistent with alloying with carbon as a result of exposure to air. A less clear trend of decreased connectivity associated with air exposure was also observed. In making the case that exposure to air should be considered a doping process, these results may explain the wide varibability of "undoped" MgB2 properties extant in the literature.Comment: Work presented at ASC 2006 in Seattl

    Uberon, an integrative multi-species anatomy ontology

    Get PDF
    We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at http://uberon.or

    Nanoscale grains, high irreversibility field, and large critical current density as a function of high energy ball milling time in C-doped magnesium diboride

    Full text link
    Magnesium diboride (MgB2) powder was mechanically alloyed by high energy ball milling with C to a composition of Mg(B0.95C0.05)2 and then sintered at 1000 C in a hot isostatic press. Milling times varied from 1 minute to 3000 minutes. Full C incorporation required only 30-60 min of milling. Grain size of sintered samples decreased with increased milling time to less than 30 nm for 20-50 hrs of milling. Milling had a weak detrimental effect on connectivity. Strong irreversibility field (H*) increase (from 13.3 T to 17.2 T at 4.2 K) due to increased milling time was observed and correlated linearly with inverse grain size (1/d). As a result, high field Jc benefited greatly from lengthy powder milling. Jc(8 T, 4.2 K) peaked at > 80,000 A/cm2 with 1200 min of milling compared with only ~ 26,000 A/cm2 for 60 min of milling. This non-compositional performance increase is attributed to grain refinement of the unsintered powder by milling, and to the probable suppression of grain growth by milling-induced MgO nano-dispersions.Comment: 12 pages, 11 figure

    Integrating phenotype ontologies across multiple species

    Get PDF
    Phenotype ontologies are typically constructed to serve the needs of a particular community, such as annotation of genotype-phenotype associations in mouse or human. Here we demonstrate how these ontologies can be improved through assignment of logical definitions using a core ontology of phenotypic qualities and multiple additional ontologies from the Open Biological Ontologies library. We also show how these logical definitions can be used for data integration when combined with a unified multi-species anatomy ontology

    The Sequence Ontology: a tool for the unification of genome annotations

    Get PDF
    The Sequence Ontology ( SO) is a structured controlled vocabulary for the parts of a genomic annotation. SO provides a common set of terms and definitions that will facilitate the exchange, analysis and management of genomic data. Because SO treats part-whole relationships rigorously, data described with it can become substrates for automated reasoning, and instances of sequence features described by the SO can be subjected to a group of logical operations termed extensional mereology operators

    National Center for Biomedical Ontology: Advancing biomedicine through structured organization of scientific knowledge

    Get PDF
    The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease

    Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Gene Ontology project supports categorization of gene products according to their location of action, the molecular functions that they carry out, and the processes that they are involved in. Although the ontologies are intentionally developed to be taxon neutral, and to cover all species, there are inherent taxon specificities in some branches. For example, the process 'lactation' is specific to mammals and the location 'mitochondrion' is specific to eukaryotes. The lack of an explicit formalization of these constraints can lead to errors and inconsistencies in automated and manual annotation.</p> <p>Results</p> <p>We have formalized the taxonomic constraints implicit in some GO classes, and specified these at various levels in the ontology. We have also developed an inference system that can be used to check for violations of these constraints in annotations. Using the constraints in conjunction with the inference system, we have detected and removed errors in annotations and improved the structure of the ontology.</p> <p>Conclusions</p> <p>Detection of inconsistencies in taxon-specificity enables gradual improvement of the ontologies, the annotations, and the formalized constraints. This is progressively improving the quality of our data. The full system is available for download, and new constraints or proposed changes to constraints can be submitted online at <url>https://sourceforge.net/tracker/?atid=605890&group_id=36855</url>.</p

    Characterization of the antiviral and inflammatory responses against Nipah virus in endothelial cells and neurons

    Get PDF
    AbstractNipah virus (NiV) is a highly pathogenic paramyxovirus which causes fatal encephalitis in up to 75% of infected humans. Endothelial cells and neurons are important cellular targets in the pathogenesis of this disease. In this study, viral replication and the innate immune responses to NiV in these cell types were measured. NiV infected endothelial cells generated a functionally robust IFN-β response, which correlated with localization of the NiV W protein to the cytoplasm. There was no antiviral response detected in infected neuronal cells. NiV infection of endothelial cells induced a significant increase in secreted inflammatory chemokines, which corresponded with the increased ability of infected cell supernatants to induce monocyte and T-lymphocyte chemotaxis. These results suggest that pro-inflammatory chemokines produced by NiV infected primary endothelial cells in vitro is consistent with the prominent vasculitis observed in infections, and provide initial molecular insights into the pathogenesis of NiV in physiologically relevant cells types
    corecore