13,471 research outputs found
Theory of the Jamming Transition at Finite Temperature
A theory for the microscopic structure and the vibrational properties of soft
sphere glass at finite temperature is presented. With an effective potential,
derived here, the phase diagram and vibrational properties are worked out
around the Maxwell critical point at zero temperature and pressure .
Variational arguments and effective medium theory identically predict a
non-trivial temperature scale with
such that low-energy vibrational properties are hard-sphere like for , and zero-temperature soft-sphere like otherwise. However, due to
crossovers in the equation of state relating , , and the packing fraction
, these two regimes lead to four regions where scaling behaviors differ
when expressed in terms of and . Scaling predictions are presented
for the mean-squared displacement, characteristic frequency, shear modulus, and
characteristic elastic length in all regions of the phase diagram.Comment: 8 pages + 3 pages S
Urban area change detection procedures with remote sensing data
The underlying factors affecting the detection and identification of nonurban to urban land cover change using satellite data were studied. Computer programs were developed to create a digital scene and to simulate the effect of the sensor point spread function (PSF) on the transfer of modulation from the scene to an image of the scene. The theory behind the development of a digital filter representing the PSF is given as well as an example of its application. Atmospheric effects on modulation transfer are also discussed. A user's guide and program listings are given
Formation and Acceleration of Uniformly-Filled Ellipsoidal Electron Bunches Obtained via Space-Charge-Driven Expansion from a Cesium-Telluride Photocathode
We report the experimental generation, acceleration and characterization of a
uniformly-filled electron bunch obtained via space-charge-driven expansion
(often referred to as "blow-out regime") in an L-band (1.3-GHz) radiofrequency
photoinjector. The beam is photoemitted from a Cesium-Telluride semiconductor
photocathode using a short ( fs) ultraviolet laser pulse. The produced
electron bunches are characterized with conventional diagnostics and the
signatures of their ellipsoidal character is observed. We especially
demonstrate the production of ellipsoidal bunches with charges up to
nC corresponding to a -fold increase compared to previous experiments
with metallic photocathodes.Comment: 9, pages, 13 figure
John Blair Deaver, M.D., and his marvelous retractor.
John Blair Deaver was born near Buck, Pennsylvania, in Lancaster County on July 25, 1855, to Dr. Joshua Montgomery Deaver and Elizabeth Clair Moore. The elder Deaver was a reputable country physician, educated at the University of Maryland, who fathered three physicians and a college president. John Blair Deaver (Fig. 1) went to boarding school at West Nottingham Academy in Maryland. After boarding school he taught in Lancaster County country schools to raise funds to attend the nation’s first medical school, the University of Pennsylvania. On receiving his M.D. degree in 1878, Dr. Deaver completed 1-year internships at both Germantown Hospital and Philadelphia Children’s Hospital, after which he embarked into clinical practice. Alongside his brother, Dr. Harry Clay Deaver, he made home visits to patients to perform surgeries as well as managed a busy 16th Street and Vine Street Philadelphia office
Tunneling mechanism of light transmission through metallic films
A mechanism of light transmission through metallic films is proposed,
assisted by tunnelling between resonating buried dielectric inclusions. This is
illustrated by arrays of Si spheres embedded in Ag. Strong transmission peaks
are observed near the Mie resonances of the spheres. The interaction among
various planes of spheres and interference effects between these resonances and
the surface plasmons of Ag lead to mixing and splitting of the resonances.
Transmission is proved to be limited only by absorption. For small spheres, the
effective dielectric constant can be tuned to values close to unity and a
method is proposed to turn the resulting materials invisible.Comment: 4 papges, 5 figure
Tunable subpicosecond electron bunch train generation using a transverse-to-longitudinal phase space exchange technique
We report on the experimental generation of a train of subpicosecond electron
bunches. The bunch train generation is accomplished using a beamline capable of
exchanging the coordinates between the horizontal and longitudinal degrees of
freedom. An initial beam consisting of a set of horizontally-separated beamlets
is converted into a train of bunches temporally separated with tunable bunch
duration and separation. The experiment reported in this Letter unambiguously
demonstrates the conversion process and its versatility.Comment: 4 pages, 5 figures, 1 table; accepted for publication in PR
Programmable telemetry system Patent
Time division multiplexed telemetry transmitting system controlled by programmed memor
A model problem for conformal parameterizations of the Einstein constraint equations
We investigate the possibility that the conformal and conformal thin sandwich
(CTS) methods can be used to parameterize the set of solutions of the vacuum
Einstein constraint equations. To this end we develop a model problem obtained
by taking the quotient of certain symmetric data on conformally flat tori.
Specializing the model problem to a three-parameter family of conformal data we
observe a number of new phenomena for the conformal and CTS methods. Within
this family, we obtain a general existence theorem so long as the mean
curvature does not change sign. When the mean curvature changes sign, we find
that for certain data solutions exist if and only if the transverse-traceless
tensor is sufficiently small. When such solutions exist, there are generically
more than one. Moreover, the theory for mean curvatures changing sign is shown
to be extremely sensitive with respect to the value of a coupling constant in
the Einstein constraint equations.Comment: 40 pages, 4 figure
John H. Gibbon, Jr., M.D.: surgical innovator, pioneer, and inspiration.
Throughout history there have been many discoveries that have changed the world, including Albert Einstein’s theory of relativity, Alexander Graham Bell’s telephone, and Jack Kilby and Robert Noyce’s microchip. There are a few analogous contributions that have been made in medicine: Sir Alexander’s discovery of penicillin, Lister’s principles of antiseptic technique, Salk and Sabin’s vaccines for polio, as well as numerous others. These innovative thinkers all had two factors in common. First, they were pioneers who faced problems that had no solutions at the time and who refused to accept the status quo in the face of great scrutiny and resistance. Second, their contributions would forever change the world. In 1930, a profound experience with a patient would forever change Dr. John H. Gibbon, Jr. and stimulate an idea to create a device that at the time sounded audacious and impossible. His device would temporarily take the role of both the heart and lungs to make repairs inside the heart or the great vessels. Twentythree years later, Dr. Gibbon used his machine to perform the first successful bypass-assisted open heart surgery
- …