600 research outputs found

    The AzTEC mm-Wavelength Camera

    Get PDF
    AzTEC is a mm-wavelength bolometric camera utilizing 144 silicon nitride micromesh detectors. Herein we describe the AzTEC instrument architecture and its use as an astronomical instrument. We report on several performance metrics measured during a three month observing campaign at the James Clerk Maxwell Telescope, and conclude with our plans for AzTEC as a facility instrument on the Large Millimeter Telescope.Comment: 13 pages, 15 figures, accepted for publication in Monthly Notice

    Interpreting Helioseismic Structure Inversion Results of Solar Active Regions

    Full text link
    Helioseismic techniques such as ring-diagram analysis have often been used to determine the subsurface structural differences between solar active and quiet regions. Results obtained by inverting the frequency differences between the regions are usually interpreted as the sound-speed differences between them. These in turn are used as a measure of temperature and magnetic-field strength differences between the two regions. In this paper we first show that the "sound-speed" difference obtained from inversions is actually a combination of sound-speed difference and a magnetic component. Hence, the inversion result is not directly related to the thermal structure. Next, using solar models that include magnetic fields, we develop a formulation to use the inversion results to infer the differences in the magnetic and thermal structures between active and quiet regions. We then apply our technique to existing structure inversion results for different pairs of active and quiet regions. We find that the effect of magnetic fields is strongest in a shallow region above 0.985R_sun and that the strengths of magnetic-field effects at the surface and in the deeper (r < 0.98R_sun) layers are inversely related, i.e., the stronger the surface magnetic field the smaller the magnetic effects in the deeper layers, and vice versa. We also find that the magnetic effects in the deeper layers are the strongest in the quiet regions, consistent with the fact that these are basically regions with weakest magnetic fields at the surface. Because the quiet regions were selected to precede or follow their companion active regions, the results could have implications about the evolution of magnetic fields under active regions.Comment: Accepted for publication in Solar Physic

    Nonlinear vibrational-state excitation and piezoelectric energy conversion in harmonically driven granular chains

    Get PDF
    This article explores the excitation of different vibrational states in a spatially extended dynamical system through theory and experiment. As a prototypical example, we consider a one-dimensional packing of spherical particles (a so-called granular chain) that is subject to harmonic boundary excitation. The combination of the multimodal nature of the system and the strong coupling between the particles due to the nonlinear Hertzian contact force leads to broad regions in frequency where different vibrational states are possible. In certain parametric regions, we demonstrate that the nonlinear Schrödinger equation predicts the corresponding modes fairly well. The electromechanical model we apply predicts accurately the conversion from the obtained mechanical energy to the electrical energy observed in experiments

    YREC: The Yale Rotating Stellar Evolution Code

    Get PDF
    The stellar evolution code YREC is outlined with emphasis on its applications to helio- and asteroseismology. The procedure for calculating calibrated solar and stellar models is described. Other features of the code such as a non-local treatment of convective core overshoot, and the implementation of a parametrized description of turbulence in stellar models, are considered in some detail. The code has been extensively used for other astrophysical applications, some of which are briefly mentioned at the end of the paper.Comment: 10 pages, 2 figures, ApSS accepte

    Dynamic Failure Properties of the Porcine Medial Collateral Ligament-Bone Complex for Predicting Injury in Automotive Collisions

    Get PDF
    The goal of this study was to model the dynamic failure properties of ligaments and their attachment sites to facilitate the development of more realistic dynamic finite element models of the human lower extremities for use in automotive collision simulations. Porcine medial collateral ligaments were chosen as a test model due to their similarities in size and geometry with human ligaments. Each porcine medial collateral ligament-bone complex (n = 12) was held in a custom test fixture placed in a drop tower to apply an axial impulsive impact load, applying strain rates ranging from 0.005 s-1 to 145 s-1. The data from the impact tests were analyzed using nonlinear regression to construct model equations for predicting the failure load of ligament-bone complexes subjected to specific strain rates as calculated from finite element knee, thigh, and hip impact simulations. The majority of the ligaments tested failed by tibial avulsion (75%) while the remaining ligaments failed via mid-substance tearing. The failure load ranged from 384 N to 1184 N and was found to increase with the applied strain rate and the product of ligament length and cross-sectional area. The findings of this study indicate the force required to rupture the porcine MCL increases with the applied bone-to-bone strain rate in the range expected from high speed frontal automotive collisions
    • 

    corecore