21 research outputs found

    The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide

    Get PDF
    http://www.nature.com/ismej/journal/v6/n2/full/ismej201199a.htmlOne of the major factors associated with global change is the ever-increasing concentration of atmospheric CO2. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO2. PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO2, and such significant effects of eCO2 on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO2. Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO2. Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO2 and environmental factors shaping the microbial community structure

    Characterization of Clostridium tyrobutyricum Strains Using Three Different Typing Techniques

    No full text
    Clostridium tyrobutyricum is well known as one of the main causative agents of severe cheese spoilage. The metabolism of this anaerobic bacterium during ripening leads to textural and sensory defects in cheese and consequential loss of product value. The potential to induce cheese spoilage, however, may vary among different strains of the same species. Therefore, a better understanding of the intra-species diversity of C. tyrobutyricum may be of practical relevance for the dairy industry. In the present study, we compared the ability of three typing techniques to differentiate 95 C. tyrobutyricum strains on the subspecies level: (1) repetitive element palindromic PCR (rep-PCR) fingerprinting combined with conventional agarose gel electrophoresis, (2) hexaplex-PCR followed by an automated capillary electrophoresis and (3) matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) typing. MALDI-TOF MS fingerprinting provided only moderate reproducibility and low discriminatory power. Both PCR-based methods were highly reproducible and discriminative, with hexaplex-PCR fingerprinting being slightly more discriminative than rep-PCR typing. Overall, a high intra-species diversity was observed among the tested strains, indicating that further investigations on the strain level may be of interest

    Random encounters and amoeba locomotion drive the predation of Listeria monocytogenes by Acanthamoeba castellanii

    No full text
    Predatory protozoa play an essential role in shaping microbial populations. Among these protozoa, Acanthamoeba are ubiquitous in the soil and aqueous environments inhabited by Listeria monocytogenes. Observations of predator-prey interactions between these two microorganisms revealed a predation strategy in which Acanthamoeba castellanii assemble L. monocytogenes in aggregates, termed backpacks, on their posterior. The rapid formation and specific location of backpacks led to the assumption that A. castellanii may recruit L. monocytogenes by releasing an attractant. However, this hypothesis has not been validated, and the mechanisms driving this process remained unknown. Here, we combined video microscopy, microfluidics, single-cell image analyses, and theoretical modeling to characterize predator-prey interactions of A. castellanii and L. monocytogenes and determined whether bacterial chemotaxis contributes to the backpack formation. Our results indicate that L. monocytogenes captures are not driven by chemotaxis. Instead, random encounters of bacteria with amoebae initialize bacterial capture and aggregation. This is supported by the strong correlation between experimentally derived capture rates and theoretical encounter models at the single-cell level. Observations of the spatial rearrangement of L. monocytogenes trapped by A. castellanii revealed that bacterial aggregation into backpacks is mainly driven by amoeboid locomotion. Overall, we show that two nonspecific, independent mechanisms, namely random encounters enhanced by bacterial motility and predator surface-bound locomotion, drive backpack formation, resulting in a bacterial aggregate on the amoeba ready for phagocytosis. Due to the prevalence of these two processes in the environment, we expect this strategy to be widespread among amoebae, contributing to their effectiveness as predators.ISSN:0027-8424ISSN:1091-649

    Individual perception of bees: Between perceived danger and willingness to protect

    Get PDF
    <div><p>The current loss of biodiversity has found its way into the media. Especially the loss of bees as pollinators has recently received much attention aiming to increase public awareness about the consequence of pollinator loss and strategies for protection. However, pollinating insects like bees often prompt considerable anxiety. Negative emotions such as fear and disgust often lead to lack of support for conservation and appropriate initiatives for protection. Our study monitored perceptions of bees in the contexts of conservation and danger bees possibly represent by applying a semantic differential using contrasting adjectives under the heading “I think bees are…”. Additionally, open questions were applied to examine individual perceptions of danger and conservation of bees. Respondents were students from primary school, secondary school and university. We compared these novices (<i>n</i> = 499) to experts (beekeepers, <i>n</i> = 153). An exploratory factor analysis of the semantic differential responses yielded three major oblique factors: <i>Interest</i>, <i>Danger</i> and <i>Conservation & Usefulness</i>. The inter-correlations of these factors were significant. Although all subgroups showed an overall high willingness to protect bees, the perception of danger scored medium. The individual experience of bee stings was the most prevalent reason for expressing fear. Educational programs focusing on pollinator conservation may reduce the perceived danger through removing misinformation, and supporting interest in the species. Based on the overall positive attitude toward bees, we suggest introducing bees (e.g., <i>Apis mellifera</i>) as a flagship species for pollinator conservation.</p></div
    corecore