1,182 research outputs found

    Machine-learning nonstationary noise out of gravitational-wave detectors

    Get PDF
    Signal extraction out of background noise is a common challenge in high-precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal-to-noise ratio of the detection, witness sensors are often used to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is nonstationary, linear techniques often fail or are suboptimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove nonstationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational-wave observatory, where we could obtain an improvement of the detector gravitational-wave reach without introducing any bias on the source parameter estimation

    Improving the Sensitivity of Advanced LIGO Using Noise Subtraction

    Get PDF
    This paper presents an adaptable, parallelizable method for subtracting linearly coupled noise from Advanced LIGO data. We explain the features developed to ensure that the process is robust enough to handle the variability present in Advanced LIGO data. In this work, we target subtraction of noise due to beam jitter, detector calibration lines, and mains power lines. We demonstrate noise subtraction over the entirety of the second observing run, resulting in increases in sensitivity comparable to those reported in previous targeted efforts. Over the course of the second observing run, we see a 30% increase in Advanced LIGO sensitivity to gravitational waves from a broad range of compact binary systems. We expect the use of this method to result in a higher rate of detected gravitational-wave signals in Advanced LIGO data.Comment: 15 pages, 6 figure

    Silicon web process development

    Get PDF
    A barrier crucible design which consistently maintains melt stability over long periods of time was successfully tested and used in long growth runs. The pellet feeder for melt replenishment was operated continuously for growth runs of up to 17 hours. The liquid level sensor comprising a laser/sensor system was operated, performed well, and meets the requirements for maintaining liquid level height during growth and melt replenishment. An automated feedback loop connecting the feed mechanism and the liquid level sensing system was designed and constructed and operated successfully for 3.5 hours demonstrating the feasibility of semi-automated dendritic web growth. The sensitivity of the cost of sheet, to variations in capital equipment cost and recycling dendrites was calculated and it was shown that these factors have relatively little impact on sheet cost. Dendrites from web which had gone all the way through the solar cell fabrication process, when melted and grown into web, produce crystals which show no degradation in cell efficiency. Material quality remains high and cells made from web grown at the start, during, and the end of a run from a replenished melt show comparable efficiencies

    System-level Noise Performance of Coherent Imaging Systems

    Get PDF
    We provide an in-depth analysis of noise considerations in coherent imaging, accounting for speckle and scintillation in addition to “conventional” image noise. Specifically, we formulate closed-form expressions for total effective noise in the presence of speckle only, scintillation only, and speckle combined with scintillation. We find analytically that photon shot noise is uncorrelated with both speckle and weak-to-moderate scintillation, despite their shared dependence on the mean signal. Furthermore, unmitigated speckle and scintillation noise tends to dominate coherent-imaging performance due to a squared mean-signal dependence. Strong coupling occurs between speckle and scintillation when both are present, and we characterize this behavior by fitting a scale factor capable of generating variances in closed form. We verify each of these claims through a series of wave-optics simulations, and we see strong agreement in general between numerical results and theoretical predictions. Our findings allow us to confidently gauge signal-to-noise ratio (SNR) expectations when active illumination produces coherent noise

    Investigating Life History Differences Between Finetooth Sharks, Carcharhinus isodon, in the Northern Gulf of Mexico and the Western North Atlantic Ocean

    Get PDF
    The life history of the finetooth shark, Carcharhinus isodon, off South Carolina was studied by determining age, growth, and size and age at maturity. These data were compared to a recent study describing the same parameters for finetooth sharks in the northern Gulf of Mexico. Cervical vertebrae were extracted from 168 specimens (71 males and 97 females), ranging in size from 376 to 1,262 mm fork length (FL), and prepared for age analysis using standard techniques. Sex-specific von Bertalanffy growth models were generated and yielded the following growth equations: Lt = 1,311 mm FL (1 - e-0.19(t - (-2.17))) for females and Lt = 1,151 mm FL (1 - e-0.33(t - (-1.43))) for males. The oldest female and male aged were 12.4 yr and 10.4 yr, respectively. Median length where 50% of the population was mature was 1,021 mm FL for females, corresponding to an age of 6.3 yr and 1,015 mm FL for males, corresponding to an age of 5.0 yr. Finetooth sharks in the western North Atlantic Ocean had higher observed ages and there was a significant difference in size at age between neonate finetooth sharks in the western North Atlantic Ocean and the northern Gulf of Mexico; however, there were no significant differences among von Bertalanffy growth function parameters between regions examined. Results indicate lower amounts of regional variation in life history parameters for finetooth sharks when compared to other small coastal sharks

    Machine-learning nonstationary noise out of gravitational-wave detectors

    Get PDF
    Signal extraction out of background noise is a common challenge in high-precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal-to-noise ratio of the detection, witness sensors are often used to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is nonstationary, linear techniques often fail or are suboptimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove nonstationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational-wave observatory, where we could obtain an improvement of the detector gravitational-wave reach without introducing any bias on the source parameter estimation

    Observations of a Feeding Aggregation of Whale Sharks, Rhincodon typus, in the North Central Gulf of Mexico

    Get PDF
    On 26 June 2006 an aggregation of 16 whale sharks was observed for a period of 4 hr in the north central Gulf of Mexico (GOM). The sharks remained within an area about 1.0 km2 in size and continuously ram filter fed at the surface. Visual analysis of a plankton sample collected from the study site revealed the presence of copious amounts of fish eggs in mid-embryonic development and a minor amount of other zooplankton. A second plankton sample (control) collected about 3.5 km from the study site in an area where no whale sharks were present contained few eggs, however other zooplankton were similar to the study site sample in species composition and abundance. Two egg morphs were identified, and samples of one of the morphs, which represented 98% of the eggs at the study site, were verified by genetic analysis as little tunny, Euthynnus alleteratus. The observed feeding behavior and the abundance of fish eggs at the study site indicated the whale sharks were feeding on recently spawned little tunny eggs. This represents the first confirmed observation of a feeding aggregation of whale sharks in the GOM

    Observation of a potential future sensitivity limitation from ground motion at LIGO Hanford

    Get PDF
    A first detection of terrestrial gravity noise in gravitational-wave detectors is a formidable challenge. With the help of environmental sensors, it can in principle be achieved before the noise becomes dominant by estimating correlations between environmental sensors and the detector. The main complication is to disentangle different coupling mechanisms between the environment and the detector. In this paper, we analyze the relations between physical couplings and correlations that involve ground motion and LIGO strain data h(t) recorded during its second science run in 2016 and 2017. We find that all noise correlated with ground motion was more than an order of magnitude lower than dominant low-frequency instrument noise, and the dominant coupling over part of the spectrum between ground and h(t) was residual coupling through the seismic-isolation system. We also present the most accurate gravitational coupling model so far based on a detailed analysis of data from a seismic array. Despite our best efforts, we were not able to unambiguously identify gravitational coupling in the data, but our improved models confirm previous predictions that gravitational coupling might already dominate linear ground-to-h(t) coupling over parts of the low-frequency, gravitational-wave observation band

    Distribution and Length Frequency of Invasive Lionfish (Pterois sp.) in the Northern Gulf of Mexico

    Get PDF
    The purpose of this communication is to document continued spatial expansion of lionfish farther west into the northern Gulf of Mexico. Furthermore, we provide the first length— mass relationships and length frequency information for lionfishes captured within the northern GOM based on data collected as part of a broader on—going study of lionfish life history in this region
    • …
    corecore