1,775 research outputs found

    Theory of dissipationless Nernst effects

    Get PDF
    We develop a theory of transverse thermoelectric (Peltier) conductivity, \alpha_{xy}, in finite magnetic field -- this particular conductivity is often the most important contribution to the Nernst thermopower. We demonstrate that \alpha_{xy} of a free electron gas can be expressed purely and exactly as the entropy per carrier irrespective of temperature (which agrees with seminal Hall bar result of Girvin and Jonson). In two dimensions we prove the universality of this result in the presence of disorder which allows explicit demonstration of a number features of interest to experiments on graphene and other two-dimensional materials. We also exploit this relationship in the low field regime and to analyze the rich singularity structure in \alpha_{xy}(B, T) in three dimensions; we discuss its possible experimental implications.Comment: 4.5 pages, 2 figure

    Monte--Carlo Thermodynamic Bethe Ansatz

    Full text link
    We introduce a Monte--Carlo simulation approach to thermodynamic Bethe ansatz (TBA). We exemplify the method on one particle integrable models, which include a free boson and a free fermions systems along with the scaling Lee--Yang model (SLYM). It is confirmed that the central charges and energies are correct to a very good precision, typically 0.1% or so. The advantage of the method is that it enables the calculation of all the dimensions and even the particular partition function.Comment: 22 pages. Added a footnote and realizations for the minimal models. Fortran program, mont-s.f90, available from the source lin

    A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata

    Full text link
    We develop a meta-algorithm that, given a polynomial (in one or more variables), and a prime p, produces a fast (logarithmic time) algorithm that takes a positive integer n and outputs the number of times each residue class modulo p appears as a coefficient when the polynomial is raised to the power n and the coefficients are read modulo p.Comment: 8 pages, accompanied by a Maple package, and numerous input and output files that can be gotten from http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/CAcount.htm

    XMM-Newton Spectroscopy of the Starburst Dominated Ultra Luminous Infrared Galaxy NGC 6240

    Full text link
    We present new XMM-Newton observation of the Ultra Luminous Infrared Galaxy (ULIRG) NGC 6240. We analyze the reflecting grating spectrometer (RGS) data, and data from the other instruments, and find a starburst dominated 0.5-3 keV spectrum with global properties resembling those observed in M82 but with a much higher luminosity. We show that the starburst region can be divided into an outer zone, beyond a radius of about 2.1 kpc, with a gas temperature of about 10^7 K and a central region with temperatures in the range (2-6) x 10^7 K. The gas in the outer region emits most of the observed Oviii Lyman-alpha line and the gas in the inner region the emission lines of higher ionization ions, including a strong Fexxv line. We also identify a small inner part, very close to the active nuclei, with typical Seyfert 2 properties including a large amount of photoionized gas producing a strong Fe K-alpha 6.4 keV line. The combined abundance, temperature and emission measure analysis indicates super solar Ne/O, Mg/O, Si/O, S/O and possibly also Fe/O. The analysis suggests densities in the range of (0.07-0.28) x epsilon^(-1/2) cm^(-3) and a total thermal gas mass of about 4 x 10^8 x epsilon^(1/2) solar masses, where epsilon is the volume filling factor. We used a simple model to argue that a massive starburst with an age of about 2 x 10^7 years can explain most of the observed properties of the source. NGC 6240 is perhaps the clearest case of an X-ray bright luminous AGN, in a merger, whose soft X-ray spectrum is dominated by a powerful starburst.Comment: 10 pages, 6 diagrams, accepted by ApJ, added a few minor change

    Excessive noise as a test for many-body localization

    Get PDF
    Recent experimental reports suggested the existence of a finite-temperature insulator in the vicinity of the superconductor-insulator transition. The rapid decay of conductivity over a narrow temperature range was theoretically linked to both a finite-temperature transition to a many-body-localized state, and to a charge-Berezinskii-Kosterlitz-Thouless transition. Here we report of low-frequency noise measurements of such insulators to test for many-body localization. We observed a huge enhancement of the low-temperatures noise when exceeding a threshold voltage for nonlinear conductivity and discuss our results in light of the theoretical models

    The X-ray spectrum of Fe XVII revisited with a multi-ion model

    Full text link
    The theoretical intensities of the soft X-ray Fe XVII lines arising from 2l-3l' transitions are reexamined using a three-ion collisional-radiative model that includes the contributions to line formation of radiative recombination (RR), dielectronic recombination (DR), resonant excitation (RE), and inner-shell collisional ionization (CI), in addition to the usual contribution of collisional excitation (CE). These additional processes enhance mostly the 2p-3s lines and not the 2p-3d lines. Under coronal equilibrium conditions, in the electron temperature range of 400 to 600 eV where the Fe XVII line emissivities peak, the combined effect of the additional processes is to enhance the 2p-3s lines at 16.78, 17.05, and 17.10 A, by ~ 25%, 30%, and 55%, respectively, compared with their traditional, single-ion CE values. The weak 2p-3d line at 15.45 A is also enhanced by up to 20%, while the other 2p-3d lines are almost unaffected. The effects of DR and RE are found to be dominant in this temperature range (400 - 600 eV), while that of CI is 3% at the most, and the contribution of RR is less than 1%. At lower temperatures, where the Fe XVII / Fe XVIII abundance ratio is high, the RE effect dominates. However, as the temperature rises and the Fe XVIII abundance increases, the DR effect takes over. The newly calculated line powers can reproduce most of the often observed high values of the (I17.05 + I17.10) / I15.01 intensity ratio. The importance of ionization and recombination processes to the line strengths also helps to explain why laboratory measurements in which CE is essentially the sole mechanism agree well with single-ion calculations, but do not reproduce the astrophysically observed ratios.Comment: Submitted to Ap
    • …
    corecore