44 research outputs found
An enigmatic hypoplastic defect of the maxillary lateral incisor in recent and fossil orangutans from Sumatra (Pongo abelii) and Borneo (Pongo pygmaeus)
Developmental dental pathologies provide insight into health of primates during ontogeny, and are particularly useful for elucidating the environment in which extant and extinct primates matured. Our aim is to evaluate whether the prevalence of an unusual dental defect on the mesiolabial enamel of the upper lateral incisor, thought to reflect dental crowding during maturation, is lesser in female orangutans, with their smaller teeth, than in males; and in Sumatran orangutans, from more optimal developmental habitats, than in those from Borneo. Our sample includes 49 Pongo pygmaeus (87 teeth), 21 P. abelii (38 teeth), Late Pleistocene paleo-orangutans from Sumatra and Vietnam (67 teeth), Late Miocene catarrhines Lufengpithecus lufengensis (2 teeth), and Anapithecus hernyaki (7 teeth). Methods include micro-CT scans, radiography, and dental metrics of anterior teeth. We observed fenestration between incisor crypts and marked crowding of unerupted crowns, which could allow tooth-to-tooth contact. Tooth size does not differ significantly in animals with or without the defect, implicating undergrowth of the jaw as the proximate cause of dental crowding and defect presence. Male orangutans from both islands show more defects than do females. The defect is significantly more common in Bornean orangutans (71 %) compared to Sumatran (29 %). Prevalence among fossil forms falls between these extremes, except that all five individual Anapithecus show one or both incisors with the defect. We conclude that maxillary lateral incisor defect is a common developmental pathology of apes that is minimized in optimal habitats and that such evidence can be used to infer habitat quality in extant and fossil apes
Maternal Programming of Sexual Behavior and Hypothalamic-Pituitary-Gonadal Function in the Female Rat
Variations in parental care predict the age of puberty, sexual activity in adolescence and the age at first pregnancy in humans. These findings parallel descriptions of maternal effects on phenotypic variation in reproductive function in other species. Despite the prevalence of such reports, little is known about potential biological mechanisms and this especially true for effects on female reproductive development. We examined the hypothesis that parental care might alter hypothalamic-pituitary-ovarian function and thus reproductive function in the female offspring of rat mothers that vary pup licking/grooming (LG) over the first week postpartum. As adults, the female offspring of Low LG mothers showed 1) increased sexual receptivity; 2) increased plasma levels of luteinizing hormone (LH) and progesterone at proestrus; 3) an increased positive-feedback effect of estradiol on both plasma LH levels and gonadotropin releasing-hormone (GnRH) expression in the medial preoptic region; and 4) increased estrogen receptor α (ERα) expression in the anterioventral paraventricular nucleus, a system that regulates GnRH. The results of a cross-fostering study provide evidence for a direct effect of postnatal maternal care as well as a possible prenatal influence. Indeed, we found evidence for increased fetal testosterone levels at embryonic day 20 in the female fetuses of High compared to Low LG mothers. Finally, the female offspring of Low LG mothers showed accelerated puberty compared to those of High LG mothers. These data suggest maternal effects in the rat on the development of neuroendocrine systems that regulate female sexual behaviour. Together with studies revealing a maternal effect on the maternal behavior of the female offspring, these findings suggest that maternal care can program alternative reproductive phenotypes in the rat through regionally-specific effects on ERα expression
Individual Variations in Maternal Care Early in Life Correlate with Later Life Decision-Making and c-Fos Expression in Prefrontal Subregions of Rats
Early life adversity affects hypothalamus-pituitary-adrenal axis activity, alters cognitive functioning and in humans is thought to increase the vulnerability to psychopathologyâe.g. depression, anxiety and schizophrenia- later in life. Here we investigated whether subtle natural variations among individual rat pups in the amount of maternal care received, i.e. differences in the amount of licking and grooming (LG), correlate with anxiety and prefrontal cortex-dependent behavior in young adulthood. Therefore, we examined the correlation between LG received during the first postnatal week and later behavior in the elevated plus maze and in decision-making processes using a rodent version of the Iowa Gambling Task (rIGT). In our cohort of male and female animals a high degree of LG correlated with less anxiety in the elevated plus maze and more advantageous choices during the last 10 trials of the rIGT. In tissue collected 2 hrs after completion of the task, the correlation between LG and c-fos expression (a marker of neuronal activity) was established in structures important for IGT performance. Negative correlations existed between rIGT performance and c-fos expression in the lateral orbitofrontal cortex, prelimbic cortex, infralimbic cortex and insular cortex. The insular cortex correlations between c-fos expression and decision-making performance depended on LG background; this was also true for the lateral orbitofrontal cortex in female rats. Dendritic complexity of insular or infralimbic pyramidal neurons did not or weakly correlate with LG background. We conclude that natural variations in maternal care received by pups may significantly contribute to later-life decision-making and activity of underlying brain structures
Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.
Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a âpathway modelsâ, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim
of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases
Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms
Shape-changing materials open an entirely new solution space for a wide range of disciplines: from architecture that responds to the environment and medical devices that unpack inside the body, to passive sensors and novel robotic actuators. While synthetic shape-changing materials are still in their infancy, studies of biological morphing materials have revealed key paradigms and features which underlie efficient natural shape-change. Here, we review some of these insights and how they have been, or may be, translated to artificial solutions. We focus on soft matter due to its prevalence in nature, compatibility with users and potential for novel design. Initially, we review examples of natural shape-changing materialsâskeletal muscle, tendons and plant tissuesâand compare with synthetic examples with similar methods of operation. Stimuli to motion are outlined in general principle, with examples of their use and potential in manufactured systems. Anisotropy is identified as a crucial element in directing shape-change to fulfil designed tasks, and some manufacturing routes to its achievement are highlighted. We conclude with potential directions for future work, including the simultaneous development of materials and manufacturing techniques and the hierarchical combination of effects at multiple length scales.</p