96 research outputs found

    Geometric Phases and Multiple Degeneracies in Harmonic Resonators

    Full text link
    In a recent experiment Lauber et al. have deformed cyclically a microwave resonator and have measured the adiabatic normal-mode wavefunctions for each shape along the path of deformation. The nontrivial observed cyclic phases around a 3-fold degeneracy were accounted for by Manolopoulos and Child within an approximate theory. However, open-path geometrical phases disagree with experiment. By solving exactly the problem, we find unsuspected extra degeneracies around the multiple one that account for the measured phase changes throughout the path. It turns out that proliferation of additional degeneracies around a multiple one is a common feature of quantum mechanics.Comment: 4 pages, 4 figures. Accepted in Phys. Rev. Let

    Off-Diagonal Geometric Phases

    Get PDF
    We investigate the adiabatic evolution of a set of non-degenerate eigenstates of a parameterized Hamiltonian. Their relative phase change can be related to geometric measurable quantities that extend the familiar concept of Berry phase to the evolution of more than one state. We present several physical systems where these concepts can be applied, including an experiment on microwave cavities for which off-diagonal phases can be determined from published data.Comment: 5 pages 2 figures - RevTeX. Revised version including geometrical interpretatio

    Enhanced Electron Pairing in a Lattice of Berry Phase Molecules

    Full text link
    We show that electron hopping in a lattice of molecules possessing a Berry phase naturally leads to pairing. Our building block is a simple molecular site model inspired by C60_{60}, but realized in closer similarity with Na3_3. In the resulting model electron hopping must be accompanied by orbital operators, whose function is to switch on and off the Berry phase as the electron number changes. The effective hamiltonians (electron-rotor and electron-pseudospin) obtained in this way are then shown to exhibit a strong pairing phenomenon, by means of 1D linear chain case studies. This emerges naturally from numerical studies of small NN-site rings, as well as from a BCS-like mean-field theory formulation. The pairing may be explained as resulting from the exchange of singlet pairs of orbital excitations, and is intimately connected with the extra degeneracy implied by the Berry phase when the electron number is odd. The relevance of this model to fullerides, to other molecular superconductors, as well as to present and future experiments, is discussed.Comment: 30 pages, RevTe

    Optical Holonomic Quantum Computer

    Get PDF
    In this paper the idea of holonomic quantum computation is realized within quantum optics. In a non-linear Kerr medium the degenerate states of laser beams are interpreted as qubits. Displacing devices, squeezing devices and interferometers provide the classical control parameter space where the adiabatic loops are performed. This results into logical gates acting on the states of the combined degenerate subspaces of the lasers, producing any one qubit rotations and interactions between any two qubits. Issues such as universality, complexity and scalability are addressed and several steps are taken towards the physical implementation of this model.Comment: 16 pages, 3 figures, REVTE

    Importance of early weight changes to predict long-term weight gain during psychotropic drug treatment.

    Get PDF
    BACKGROUND: Psychotropic drugs can induce substantial weight gain, particularly during the first 6 months of treatment. The authors aimed to determine the potential predictive power of an early weight gain after the introduction of weight gain-inducing psychotropic drugs on long-term weight gain. METHOD: Data were obtained from a 1-year longitudinal study ongoing since 2007 including 351 psychiatric (ICD-10) patients, with metabolic parameters monitored (baseline and/or 1, 3, 6, 9, 12 months) and with compliance ascertained. International Diabetes Federation and World Health Organization definitions were used to define metabolic syndrome and obesity, respectively. RESULTS: Prevalences of metabolic syndrome and obesity were 22% and 17%, respectively, at baseline and 32% and 24% after 1 year. Receiver operating characteristic analyses indicated that an early weight gain > 5% after a period of 1 month is the best predictor for important long-term weight gain (≥ 15% after 3 months: sensitivity, 67%; specificity, 88%; ≥ 20% after 12 months: sensitivity, 47%; specificity, 89%). This analysis identified most patients (97% for 3 months, 93% for 12 months) who had weight gain ≤ 5% after 1 month as continuing to have a moderate weight gain after 3 and 12 months. Its predictive power was confirmed by fitting a longitudinal multivariate model (difference between groups in 1 year of 6.4% weight increase as compared to baseline, P = .0001). CONCLUSION: Following prescription of weight gain-inducing psychotropic drugs, a 5% threshold for weight gain after 1 month should raise clinician concerns about weight-controlling strategies

    Dynamical Jahn-Teller Effect and Berry Phase in Positively Charged Fullerene I. Basic Considerations

    Full text link
    We study the Jahn-Teller effect of positive fullerene ions 2^2C60+_{60}^{+} and 1^1C602+_{60}^{2+}. The aim is to discover if this case, in analogy with the negative ion, possesses a Berry phase or not, and what are the consequences on dynamical Jahn-Teller quantization. Working in the linear and spherical approximation, we find no Berry phase in 1^1C602+_{60}^{2+}, and presence/absence of Berry phase for coupling of one L=2L=2 hole to an L=4L=4/L=2L=2 vibration. We study in particular the special equal-coupling case (g2=g4g_2=g_4), which is reduced to the motion of a particle on a 5-dimensional sphere. In the icosahedral molecule, the final outcome assesses the presence/absence of a Berry phase of π\pi for the huh_u hole coupled to GgG_g/HhH_h vibrations. Some qualitative consequences on ground-state symmetry, low-lying excitations, and electron emission from C60_{60} are spelled out.Comment: 31 pages (RevTeX), 3 Postscript figures (uuencoded

    Associations Between High Plasma Methylxanthine Levels, Sleep Disorders and Polygenic Risk Scores of Caffeine Consumption or Sleep Duration in a Swiss Psychiatric Cohort.

    Get PDF
    Objective: We first sought to examine the relationship between plasma levels of methylxanthines (caffeine and its metabolites) and sleep disorders, and secondarily between polygenic risk scores (PRS) of caffeine consumption or sleep duration with methylxanthine plasma levels and/or sleep disorders in a psychiatric cohort. Methods: Plasma levels of methylxanthines were quantified by ultra-high performance liquid chromatography/tandem mass spectrometry. In inpatients, sleep disorder diagnosis was defined using ICD-10 "F51.0," sedative drug intake before bedtime, or hospital discharge letters, while a subgroup of sedative drugs was used for outpatients. The PRS of coffee consumption and sleep duration were constructed using publicly available GWAS results from the UKBiobank. Results: 1,747 observations (1,060 patients) were included (50.3% of observations with sleep disorders). Multivariate analyses adjusted for age, sex, body mass index, setting of care and psychiatric diagnoses showed that patients in the highest decile of plasma levels of methylxanthines had more than double the risk for sleep disorders compared to the lowest decile (OR = 2.13, p = 0.004). PRS of caffeine consumption was associated with plasma levels of caffeine, paraxanthine, theophylline and with their sum (β = 0.1; 0.11; 0.09; and 0.1, p <sub>corrected</sub> = 0.01; 0.02; 0.02; and 0.01, respectively) but not with sleep disorders. A trend was found between the PRS of sleep duration and paraxanthine levels (β = 0.13, p <sub>corrected</sub> = 0.09). Discussion: Very high caffeine consumption is associated with sleep disorders in psychiatric in- and outpatients. Future prospective studies should aim to determine the benefit of reducing caffeine consumption in high caffeine-consuming patients suffering from sleep disorders

    Surprises in the Orbital Magnetic Moment and g-Factor of the Dynamic Jahn-Teller Ion C_{60}^-

    Full text link
    We calculate the magnetic susceptibility and g-factor of the isolated C_{60}^- ion at zero temperature, with a proper treatment of the dynamical Jahn-Teller effect, and of the associated orbital angular momentum, Ham-reduced gyromagnetic ratio, and molecular spin-orbit coupling. A number of surprises emerge. First, the predicted molecular spin-orbit splitting is two orders of magnitude smaller than in the bare carbon atom, due to the large radius of curvature of the molecule. Second, this reduced spin-orbit splitting is comparable to Zeeman energies, for instance, in X-band EPR at 3.39KGauss, and a field dependence of the g-factor is predicted. Third, the orbital gyromagnetic factor is strongly reduced by vibron coupling, and so therefore are the effective weak-field g-factors of all low-lying states. In particular, the ground-state doublet of C_{60}^- is predicted to show a negative g-factor of \sim -0.1.Comment: 19 pages RevTex, 2 postscript figures include
    corecore