21 research outputs found

    Simulating quantum correlations as a distributed sampling problem

    Full text link
    It is known that quantum correlations exhibited by a maximally entangled qubit pair can be simulated with the help of shared randomness, supplemented with additional resources, such as communication, post-selection or non-local boxes. For instance, in the case of projective measurements, it is possible to solve this problem with protocols using one bit of communication or making one use of a non-local box. We show that this problem reduces to a distributed sampling problem. We give a new method to obtain samples from a biased distribution, starting with shared random variables following a uniform distribution, and use it to build distributed sampling protocols. This approach allows us to derive, in a simpler and unified way, many existing protocols for projective measurements, and extend them to positive operator value measurements. Moreover, this approach naturally leads to a local hidden variable model for Werner states.Comment: 13 pages, 2 figure

    Simulation of bipartite qudit correlations

    Get PDF
    We present a protocol to simulate the quantum correlations of an arbitrary bipartite state, when the parties perform a measurement according to two traceless binary observables. We show that log⁥(d)\log(d) bits of classical communication is enough on average, where dd is the dimension of both systems. To obtain this result, we use the sampling approach for simulating the quantum correlations. We discuss how to use this method in the case of qudits.Comment: 7 page

    On optimal entanglement assisted one-shot classical communication

    Full text link
    The one-shot success probability of a noisy classical channel for transmitting one classical bit is the optimal probability with which the bit can be sent via a single use of the channel. Prevedel et al. (PRL 106, 110505 (2011)) recently showed that for a specific channel, this quantity can be increased if the parties using the channel share an entangled quantum state. We completely characterize the optimal entanglement-assisted protocols in terms of the radius of a set of operators associated with the channel. This characterization can be used to construct optimal entanglement-assisted protocols from the given classical channel and to prove the limit of such protocols. As an example, we show that the Prevedel et al. protocol is optimal for two-qubit entanglement. We also prove some simple upper bounds on the improvement that can be obtained from quantum and no-signaling correlations.Comment: 5 pages, plus 7 pages of supplementary material. v2 is significantly expanded and contains a new result (Theorem 2

    Games on graphs with a public signal monitoring

    Full text link
    We study pure Nash equilibria in games on graphs with an imperfect monitoring based on a public signal. In such games, deviations and players responsible for those deviations can be hard to detect and track. We propose a generic epistemic game abstraction, which conveniently allows to represent the knowledge of the players about these deviations, and give a characterization of Nash equilibria in terms of winning strategies in the abstraction. We then use the abstraction to develop algorithms for some payoff functions.Comment: 28 page

    Classical and quantum partition bound and detector inefficiency

    Full text link
    We study randomized and quantum efficiency lower bounds in communication complexity. These arise from the study of zero-communication protocols in which players are allowed to abort. Our scenario is inspired by the physics setup of Bell experiments, where two players share a predefined entangled state but are not allowed to communicate. Each is given a measurement as input, which they perform on their share of the system. The outcomes of the measurements should follow a distribution predicted by quantum mechanics; however, in practice, the detectors may fail to produce an output in some of the runs. The efficiency of the experiment is the probability that the experiment succeeds (neither of the detectors fails). When the players share a quantum state, this gives rise to a new bound on quantum communication complexity (eff*) that subsumes the factorization norm. When players share randomness instead of a quantum state, the efficiency bound (eff), coincides with the partition bound of Jain and Klauck. This is one of the strongest lower bounds known for randomized communication complexity, which subsumes all the known combinatorial and algebraic methods including the rectangle (corruption) bound, the factorization norm, and discrepancy. The lower bound is formulated as a convex optimization problem. In practice, the dual form is more feasible to use, and we show that it amounts to constructing an explicit Bell inequality (for eff) or Tsirelson inequality (for eff*). We give an example of a quantum distribution where the violation can be exponentially bigger than the previously studied class of normalized Bell inequalities. For one-way communication, we show that the quantum one-way partition bound is tight for classical communication with shared entanglement up to arbitrarily small error.Comment: 21 pages, extended versio

    Kleene Algebras and Semimodules for Energy Problems

    Get PDF
    With the purpose of unifying a number of approaches to energy problems found in the literature, we introduce generalized energy automata. These are finite automata whose edges are labeled with energy functions that define how energy levels evolve during transitions. Uncovering a close connection between energy problems and reachability and B\"uchi acceptance for semiring-weighted automata, we show that these generalized energy problems are decidable. We also provide complexity results for important special cases

    Bell Correlations and the Common Future

    Full text link
    Reichenbach's principle states that in a causal structure, correlations of classical information can stem from a common cause in the common past or a direct influence from one of the events in correlation to the other. The difficulty of explaining Bell correlations through a mechanism in that spirit can be read as questioning either the principle or even its basis: causality. In the former case, the principle can be replaced by its quantum version, accepting as a common cause an entangled state, leaving the phenomenon as mysterious as ever on the classical level (on which, after all, it occurs). If, more radically, the causal structure is questioned in principle, closed space-time curves may become possible that, as is argued in the present note, can give rise to non-local correlations if to-be-correlated pieces of classical information meet in the common future --- which they need to if the correlation is to be detected in the first place. The result is a view resembling Brassard and Raymond-Robichaud's parallel-lives variant of Hermann's and Everett's relative-state formalism, avoiding "multiple realities."Comment: 8 pages, 5 figure

    The Hilbertian Tensor Norm and Entangled Two-Prover Games

    Full text link
    We study tensor norms over Banach spaces and their relations to quantum information theory, in particular their connection with two-prover games. We consider a version of the Hilbertian tensor norm γ2\gamma_2 and its dual γ2∗\gamma_2^* that allow us to consider games with arbitrary output alphabet sizes. We establish direct-product theorems and prove a generalized Grothendieck inequality for these tensor norms. Furthermore, we investigate the connection between the Hilbertian tensor norm and the set of quantum probability distributions, and show two applications to quantum information theory: firstly, we give an alternative proof of the perfect parallel repetition theorem for entangled XOR games; and secondly, we prove a new upper bound on the ratio between the entangled and the classical value of two-prover games.Comment: 33 pages, some of the results have been obtained independently in arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6 rewritten, v3: completely rewritten in order to improve readability; title changed; references added; published versio

    The Contextual Fraction as a Measure of Contextuality

    Get PDF
    We consider the contextual fraction as a quantitative measure of contextuality of empirical models, i.e. tables of probabilities of measurement outcomes in an experimental scenario. It provides a general way to compare the degree of contextuality across measurement scenarios; it bears a precise relationship to violations of Bell inequalities; its value, and a witnessing inequality, can be computed using linear programming; it is monotone with respect to the "free" operations of a resource theory for contextuality; and it measures quantifiable advantages in informatic tasks, such as games and a form of measurement based quantum computing.Comment: 6 pages plus 12 pages supplemental material, 3 figure
    corecore