156 research outputs found

    Nonlinear Magneto-Optics of freestanding Fe monolayers from first principles

    Full text link
    The nonlinear magneto-optical Kerr-effect (NOLIMOKE) is determined for freestanding Fe monolayers with several in-plane structures from first principles. Based on the theory of nonlinear magneto-optics by H\"ubner and Bennemann [Phys. Rev. B, {\bf 40}, 5973 (1989)] we calculate the nonlinear susceptibilities of the monolayers using the ab initio FLAPW-method WIEN95 with the additional implementation of spin-orbit coupling and the calculation of the dipole transition matrix elements appropriate for freestanding monolayers. We present results for the spectral dependence of the nonlinear susceptibility tensor elements and the resulting intensities and Kerr angles. Special emphasize is put on the effects of structural changes such as the variation of the lattice constant and different surface orientations. The influence of spin-orbit coupling on the tensor elements for different magnetization directions is presented as well as the azimuthal dependence of the intensities generated by several low index surfaces, showing the pronounced sensitivity of second harmonic generation to lateral structural changes as well as magnetic properties even in the monolayer range

    A Pilot Evaluation Study Using LectureTools to Enhance Interactivity in Classroom-Based Teaching in a Project Management Course

    Get PDF
    With students’ ownership of laptops and mobile devices increasing, there exists an opportunity to harness their use to support interactivity within the traditional classroom. Two educators, motivated to enhance interactivity in a two-day project management course at a UK university, trialled LectureTools, a cloud-based audience-response system. To assess potential benefits to learning and teaching, as well as identifying accompanying challenges, an evaluation study was carried out comprising a range of data sources. These included observation of a LectureTools-based lecture and a student questionnaire followed by a focus group discussion with a subset of students about their experiences throughout the two days. Interviews with both teachers were also conducted, adding to the evaluation research data and giving them an opportunity to reflect on their teaching practice. All participants recognised the benefits of LectureTools in promoting student engagement, learning and discussion while students acknowledged the distractive potential of having laptops in the lecture theatre. Efforts are required by educators to ensure that the interactive potential of laptops in classrooms to enhance learning and teaching is supported while controlling the potential for distraction. Future research is needed to ascertain the impact of using LectureTools on approaches to learning and teaching

    Angular Dependences of Third Harmonic Generation from Microdroplets

    Full text link
    We present experimental and theoretical results for the angular dependence of third harmonic generation (THG) of water droplets in the micrometer range (size parameter 62<ka<24862<ka<248). The THG signal in pp- and ss-polarization obtained with ultrashort laser pulses is compared with a recently developed nonlinear extension of classical Mie theory including multipoles of order l≤250l\leq250. Both theory and experiment yield over a wide range of size parameters remarkably stable intensity maxima close to the forward and backward direction at ``magic angles''. In contrast to linear Mie scattering, both are of comparable intensity.Comment: 4 pages, RevTeX, 3 figures available on request from [email protected], submitted to PR

    Evaluation of the InDUCKtion project at UCL

    Get PDF
    Executive summary: There is evidence that a good induction to university life can help with student retention; however, there is also a danger of overwhelming students during the intense period of fresher’s week. Under the auspices of a small grant from the Higher Education Academy’s ‘Changing the Learning Landscape’ funding stream, staff at two universities (University College London and Southampton Solent University) collaborated to produce an innovative and engaging induction project entitled ‘InDUCKtion’, based on the idea of an induction duck being a fun character for students to interact with. At UCL, the InDUCKtion duck existed in the form of a physical plastic duck included in international postgraduate student induction packs, and they were encouraged to take photos of themselves in and around UCL and London as part of a photo challenge using social media. It was anticipated that this would enable students to familiarise themselves with the locale, make friends and have fun at the same time. The InDUCKtion duck was also evident on flyers and posters with QR codes advertising an online tour to enable students to gain an accelerated familiarisation with the campus and its facilities. Within UCL, the project was a collaborative, cross-departmental venture instigated by members of UCL’s E-Learning Environments (ELE) working in partnership with the Centre for the Advancement of Learning and Teaching (CALT) and Student Support and Wellbeing (SSW). The logistics of the project meant that the team members also had to liaise with a number of other individuals and departments around UCL, to help promote and implement the project. Despite a rapid following on Twitter in a relatively short period, a reasonable hit rate on the QR code for the main page of the online tour resource, and some engagement with the photo challenges using social media, participation in the project was lower than anticipated. Lessons learned from an evaluation perspective revealed that adding another activity to an already overwhelming fresher’s week was problematic, despite its innovative and interactive nature. The use of QR codes was problematic for a number of reasons, and the project needed more buy-in from student representatives and academics to provide institutional endorsement. Recommendations for future instances of the project include securing student representation and academic endorsement, integrating the activity with parallel induction activities – particularly with academic departments, replacing QR codes with an alternative technology-enhanced learning approach and optimising the learning design to better motivate students and promote groupwork

    The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis

    Get PDF
    Although necrosis and necroinflammation are central features of many liver diseases, the role of programmed necrosis in the context of inflammation-dependent hepatocellular death remains to be fully determined. Here, we have demonstrated that the pseudokinase mixed lineage kinase domain-like protein (MLKL), which plays a key role in the execution of receptor interacting protein (RIP) lcinase-dependent necroptosis, is upregulated and activated in human autoimmune hepatitis and in a murine model of inflammation-dependent hepatitis. Using genetic and pharmacologic approaches, we determined that hepatocellular necrosis in experimental hepatitis is driven by an MLKL-dependent pathway that occurs independently of RIPK3. Moreover, we have provided evidence that the cytotoxic activity of the proinflammatory cytokine IFN-gamma in hepatic inflammation is strongly connected to induction of MLKL expression via activation of the transcription factor STAT1. In summary, our results reveal a pathway for MLKL-dependent programmed necrosis that is executed in the absence of RIPK3 and potentially drives the pathogenesis of severe liver diseases

    Mechanical shear stress and leukocyte phenotype and function: Implications for ventricular assist device development and use

    Get PDF
    Heart failure (HF) remains a disease of ever increasing prevalence in the modern world. Patients with end-stage HF are being referred increasingly for mechanical circulatory support (MCS). MCS can assist patients who are ineligible for transplant and stabilise eligible patients prior to transplantation. It is also used during cardiopulmonary bypass (CPB) surgery to maintain circulation whilst operating on the heart. Whilst MCS can stabilise HF and improve quality of life, complications such as infection and thrombosis remain a common risk. Leukocytes can contribute to both of these complications. Contact with foreign surfaces and the introduction of artificial mechanical shear stress can lead to activation of leukocytes, reduced functionality, and the release of pro-inflammatory and pro-thrombogenic microparticles. Assessing the impact of mechanical trauma to leukocytes is largely overlooked in comparison to red blood cells and platelets. This review provides an overview of the available literature on the effects of in vitro to clinical MCS systems on leukocyte phenotype and function. One purpose of this review is to emphasise the importance of studying mechanical trauma to leukocytes to better understand the occurrence of adverse events during MCS

    Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: a systematic review

    Get PDF
    Background: Artificial intelligence (AI) and machine learning (ML) models continue to evolve the clinical decision support systems (CDSS). However, challenges arise when it comes to the integration of AI/ML into clinical scenarios. In this systematic review, we followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA), the population, intervention, comparator, outcome, and study design (PICOS), and the medical AI life cycle guidelines to investigate studies and tools which address AI/ML-based approaches towards clinical decision support (CDS) for monitoring cardiovascular patients in intensive care units (ICUs). We further discuss recent advances, pitfalls, and future perspectives towards effective integration of AI into routine practices as were identified and elaborated over an extensive selection process for state-of-the-art manuscripts. Methods: Studies with available English full text from PubMed and Google Scholar in the period from January 2018 to August 2022 were considered. The manuscripts were fetched through a combination of the search keywords including AI, ML, reinforcement learning (RL), deep learning, clinical decision support, and cardiovascular critical care and patients monitoring. The manuscripts were analyzed and filtered based on qualitative and quantitative criteria such as target population, proper study design, cross-validation, and risk of bias. Results: More than 100 queries over two medical search engines and subjective literature research were developed which identified 89 studies. After extensive assessments of the studies both technically and medically, 21 studies were selected for the final qualitative assessment. Discussion: Clinical time series and electronic health records (EHR) data were the most common input modalities, while methods such as gradient boosting, recurrent neural networks (RNNs) and RL were mostly used for the analysis. Seventy-five percent of the selected papers lacked validation against external datasets highlighting the generalizability issue. Also, interpretability of the AI decisions was identified as a central issue towards effective integration of AI in healthcare

    Nonlinear Magneto-Optics of Fe Monolayers from first principles: Structural dependence and spin-orbit coupling strength

    Full text link
    We calculate the nonlinear magneto-optical response of free-standing fcc (001), (110) and (111) oriented Fe monolayers. The bandstructures are determined from first principles using a full-potential LAPW method with the additional implementation of spin-orbit coupling. The variation of the spin-orbit coupling strength and the nonlinear magneto-optical spectra upon layer orientation are investigated. We find characteristic differences which indicate an enhanced sensitivity of nonlinear magneto-optics to surface orientation and variation of the in-plane lattice constants. In particular the crossover from onedimensional stripe structures to twodimensional films of (111) layers exhibits a clean signature in the nonlinear Kerr-spectra and demonstrates the versatility of nonlinear magneto-optics as a tool for in situ thin-film analysis.Comment: 28 pages, RevTeX, psfig, submitted to PR
    • …
    corecore