7 research outputs found

    The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe

    No full text
    Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non-crop habitats, and species’ dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7- and 1.4-fold respectively. Arable-dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services

    Restoration of biodiversity and ecosystem services on agricultural land

    Get PDF
    Cultivation and cropping are major causes of destruction and degradation of natural ecosystems throughout the world. We face the challenge of maintaining provisioning services while conserving or enhancing other ecosystem services and biodiversity in agricultural landscapes. There is a range of possibilities within two types of intervention, namely “land sharing” and “land separation”; the former advocates the enhancement of the farmed environment, but the latter a separation between land designated for farming versus conservation. Land sharing may involve biodiversity-based agricultural practices, learning from traditional farming, changing from conventional to organic agriculture and from “simple” crops and pastures to agro-forestry systems, and restoring or creating specific elements to benefit wildlife and particular services without decreasing agricultural production. Land separation in the farmland context involves restoring or creating non-farmland habitat at the expense of field-level agricultural production—for example, woodland on arable land. Restoration by land sharing has the potential to enhance agricultural production, other ecosystem services and biodiversity at both the field and landscape scale; however, restoration by land separation would provide these benefits only at the landscape scale. Although recent debate has contrasted these approaches, we suggest they should be used in combination to maximize benefits. Furthermore, we suggest “woodland islets”, an intermediate approach between land abandonment and farmland afforestation, for ecological restoration in extensive agricultural landscapes. This approach allows reconciliation of farmland production, conservation of values linked to cultural landscapes, enhancement of biodiversity, and provision of a range of ecosystem services. Beyond academic research, restoration projects within agricultural landscapes are essential if we want to halt environmental degradation and biodiversity loss

    Can conditions experienced during migration limit the population levels of birds?

    No full text
    Populations of migratory birds are usually considered to be limited by conditions in breeding or wintering areas, but some might be limited by conditions encountered on migration. This could occur at stopover sites where competition for restricted food supplies can reduce subsequent survival or breeding success, or during the flights themselves, when adverse weather can occasionally kill large numbers of individuals. Competition for food could act in a density-dependent manner and help to regulate populations, whereas weather effects are more likely to act in a density-independent manner. The evidence for these views is explored in this paper. When preparing for migration, birds must normally obtain more food per day than usual, in order to accumulate the body reserves that fuel their flights. Birds often concentrate in large numbers at particular stopover sites, where food can become scarce, thus affecting migratory performance. Rates of weight gain, departure weights, and stopover durations often correlate with food supplies at stopover sites, sometimes influencing the subsequent survival and reproductive success of individuals, which can in turn affect subsequent breeding numbers. Many studies have provided evidence for interference and depletion competition at stopover sites, relatively few for migration conditions influencing the subsequent breeding or survival of individuals, and even fewer for effects on subsequent breeding numbers. Migrants in flight occasionally suffer substantial mortality in storms, especially over water, sometimes involving many thousands of birds at a time. Other mass mortalities have resulted from atypical ‘winter-like’ weather, occurring soon after the arrival of summer migrants in their breeding areas or just before their departure in autumn. Again, many thousands of birds at a time have been killed in such incidents, causing reductions of 30–90% in local breeding densities. In some bird species, migration-related events can at times have substantial effects on the year-to-year changes in breeding population levels. Nonetheless, the difficulties involved in investigating migrating birds at different points on their migration routes have so far limited the number of studies on the influence of events during migration periods on population level
    corecore