106 research outputs found

    TASP: Towards anonymity sets that persist

    Get PDF
    Anonymous communication systems are vulnerable to long term passive "intersection attacks". Not all users of an anonymous communication system will be online at the same time, this leaks some information about who is talking to who. A global passive adversary observing all communications can learn the set of potential recipients of a message with more and more confidence over time. Nearly all deployed anonymous communication tools offer no protection against such attacks. In this work, we introduce TASP, a protocol used by an anonymous communication system that mitigates intersection attacks by intelligently grouping clients together into anonymity sets. We find that with a bandwidth overhead of just 8% we can dramatically extend the time necessary to perform a successful intersection attack

    Generating Steganographic Images via Adversarial Training

    Get PDF
    Adversarial training was recently shown to be competitive against supervised learning methods on computer vision tasks, however, studies have mainly been confined to generative tasks such as image synthesis. In this paper, we apply adversarial training techniques to the discriminative task of learning a steganographic algorithm. Steganography is a collection of techniques for concealing information by embedding it within a non-secret medium, such as cover texts or images. We show that adversarial training can produce robust steganographic techniques: our unsupervised training scheme produces a steganographic algorithm that competes with state-of-the-art steganographic techniques, and produces a robust steganalyzer, which performs the discriminative task of deciding if an image contains secret information. We define a game between three parties, Alice, Bob and Eve, in order to simultaneously train both a steganographic algorithm and a steganalyzer. Alice and Bob attempt to communicate a secret message contained within an image, while Eve eavesdrops on their conversation and attempts to determine if secret information is embedded within the image. We represent Alice, Bob and Eve by neural networks, and validate our scheme on two independent image datasets, showing our novel method of studying steganographic problems is surprisingly competitive against established steganographic techniques

    Money Walks: A Human-Centric Study on the Economics of Personal Mobile Data

    Full text link
    In the context of a myriad of mobile apps which collect personally identifiable information (PII) and a prospective market place of personal data, we investigate a user-centric monetary valuation of mobile PII. During a 6-week long user study in a living lab deployment with 60 participants, we collected their daily valuations of 4 categories of mobile PII (communication, e.g. phonecalls made/received, applications, e.g. time spent on different apps, location and media, photos taken) at three levels of complexity (individual data points, aggregated statistics and processed, i.e. meaningful interpretations of the data). In order to obtain honest valuations, we employ a reverse second price auction mechanism. Our findings show that the most sensitive and valued category of personal information is location. We report statistically significant associations between actual mobile usage, personal dispositions, and bidding behavior. Finally, we outline key implications for the design of mobile services and future markets of personal data.Comment: 15 pages, 2 figures. To appear in ACM International Joint Conference on Pervasive and Ubiquitous Computing (Ubicomp 2014

    Guard Sets for Onion Routing

    Get PDF
    “Entry” guards protect the Tor onion routing system from variants of the “predecessor” attack, that would allow an adversary with control of a fraction of routers to eventually de-anonymize some users. Research has however shown the three guard scheme has drawbacks and Dingledine et al. proposed in 2014 for each user to have a single long-term guard. We first show that such a guard selection strategy would be optimal if the Tor network was failure-free and static. However under realistic failure conditions the one guard proposal still suffers from the classic fingerprinting attacks, uniquely identifying users. Furthermore, under dynamic network conditions using single guards offer smaller anonymity sets to users of fresh guards. We propose and analyze an alternative guard selection scheme by way of grouping guards together to form shared guard sets. We compare the security and performance of guard sets with the three guard scheme and the one guard proposal. We show guard sets do provide increased resistance to a number of attacks, while foreseeing no significant degradation in performance or bandwidth utilization

    Defending against Sybil Devices in Crowdsourced Mapping Services

    Full text link
    Real-time crowdsourced maps such as Waze provide timely updates on traffic, congestion, accidents and points of interest. In this paper, we demonstrate how lack of strong location authentication allows creation of software-based {\em Sybil devices} that expose crowdsourced map systems to a variety of security and privacy attacks. Our experiments show that a single Sybil device with limited resources can cause havoc on Waze, reporting false congestion and accidents and automatically rerouting user traffic. More importantly, we describe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable of remotely tracking precise movements for large user populations while avoiding detection. We propose a new approach to defend against Sybil devices based on {\em co-location edges}, authenticated records that attest to the one-time physical co-location of a pair of devices. Over time, co-location edges combine to form large {\em proximity graphs} that attest to physical interactions between devices, allowing scalable detection of virtual vehicles. We demonstrate the efficacy of this approach using large-scale simulations, and discuss how they can be used to dramatically reduce the impact of attacks against crowdsourced mapping services.Comment: Measure and integratio

    Detecting Forged Alcohol Non-invasively Through Vibrational Spectroscopy and Machine Learning

    Get PDF
    Alcoholic spirits are a common target for counterfeiting and adulteration, with potential costs to public health, the taxpayer and brand integrity. Current methods to authenticate spirits include examinations of superficial appearance and consistency, or require the tester to open the bottle and remove a sample. The former is inexact, while the latter is not suitable for widespread screening or for high-value spirits, which lose value once opened. We study whether non-invasive near infrared spectroscopy, in combination with traditional and time series classification methods, can correctly classify the alcohol content (a key factor in determining authenticity) of synthesised spirits sealed in real bottles. Such an experimental setup could allow for a portable, cheap to operate, and fast authentication device. We find that ethanol content can be classified with high accuracy, however methanol content proved difficult with the algorithms evaluated

    The Loopix Anonymity System

    Get PDF
    We present Loopix, a low-latency anonymous communication system that provides bi-directional 'third-party' sender and receiver anonymity and unobservability. Loopix leverages cover traffic and brief message delays to provide anonymity and achieve traffic analysis resistance, including against a global network adversary. Mixes and clients self-monitor the network via loops of traffic to provide protection against active attacks, and inject cover traffic to provide stronger anonymity and a measure of sender and receiver unobservability. Service providers mediate access in and out of a stratified network of Poisson mix nodes to facilitate accounting and off-line message reception, as well as to keep the number of links in the system low, and to concentrate cover traffic. We provide a theoretical analysis of the Poisson mixing strategy as well as an empirical evaluation of the anonymity provided by the protocol and a functional implementation that we analyze in terms of scalability by running it on AWS EC2. We show that a Loopix relay can handle upwards of 300 messages per second, at a small delay overhead of less than 1.5 ms on top of the delays introduced into messages to provide security. Overall message latency is in the order of seconds - which is low for a mix-system. Furthermore, many mix nodes can be securely added to a stratified topology to scale throughput without sacrificing anonymity

    Ultraviolet Spectrophotometry of Variable Early-Type Be and B stars Derived from High-Resolution IUE Data

    Get PDF
    High-dispersion IUE data encode significant information about aggregate line absorptions that cannot be conveniently extracted from individual spectra. We apply a new technique in which fluxes from each echelle order of a short wavelength IUE spectrum are binned together to construct low-resolution spectra of a rapidly varying B or Be star. The ratio of binned spectra obtained bright- star and faint-star phases contains information about the mechanism responsible for a star's variability, such as from pulsations or occultations of the star by ejected matter. We model the variations caused by these mechanism by means of model atmosphere and absorbing-slab codes. Line absorptions strength changes are sensitive to conditions in circumstellar clouds with T = 8,000--13,000K. To demonstrate proofs of concept, we construct spectral ratios for circumstellar structures associated with flux variability in various Be stars: (1) Vela X1 has bow-shock wind trailing its neutron star companion and shows signatures of gas at 13,000K or 26,000K medium in different sectors, (2) 88 Her undergoes episodic outbursts as its UV flux fades, followed a year later by a dimming in visible wavelengths, a result of a gray opacity that dominates as the shell expands and cools, and (3) zeta Tau and 60 Cyg exhibit periodic spectrum and flux changes, which match model absorptions for occulting clouds. Also, ratioed UV spectra of strongly pulsating stars show unique spectrophotometric signatures which can be simulated with models. An analysis of ratioed spectra obtained for a typical sample of 18 classical Be stars known to have rapid periodic flux variations indicates that 13 of them have ratioed spectra which are relatively featureless or have signatures of pulsation. Ratioed spectra of 3 others in the sample are consistent with the presence of co-rotating clouds.Comment: Latex 49 dbl-spaced pages plus 9 figures. Accepted by ApJ. Files available at ftp://nobel.stsci.edu/pub/uv
    • …
    corecore