3,531 research outputs found

    Entropic issues in contemporary cosmology

    Full text link
    Penrose [1] has emphasized how the initial big bang singularity requires a special low entropy state. We address how recent brane cosmological schemes address this problem and whether they offer any apparent resolution. Pushing the start time back to t=t=-\infty or utilizing maximally symmetric AdS spaces simply exacerbates or transfers the problem. Because the entropy of de Sitter space is S1/ΛS\leq 1/\Lambda, using the present acceleration of the universe as a low energy (Λ10120(\Lambda\sim 10^{-120}) inflationary stage, as in cyclic ekpyrotic models, produces a gravitational heat death after one cycle. Only higher energy driven inflation, together with a suitable, quantum gravity holography style, restriction on {\em ab initio} degrees of freedom, gives a suitable low entropy initial state. We question the suggestion that a high energy inflationary stage could be naturally reentered by Poincare recurrence within a finite causal region of an accelerating universe. We further give a heuristic argument that so-called eternal inflation is not consistent with the 2nd law of thermodynamics within a causal patch.Comment: brief discussion on Poincare recurrence include

    The Maxwell–Vlasov equations in Euler–Poincaré form

    Get PDF
    Low's well-known action principle for the Maxwell–Vlasov equations of ideal plasma dynamics was originally expressed in terms of a mixture of Eulerian and Lagrangian variables. By imposing suitable constraints on the variations and analyzing invariance properties of the Lagrangian, as one does for the Euler equations for the rigid body and ideal fluids, we first transform this action principle into purely Eulerian variables. Hamilton's principle for the Eulerian description of Low's action principle then casts the Maxwell–Vlasov equations into Euler–Poincaré form for right invariant motion on the diffeomorphism group of position-velocity phase space, [openface R]6. Legendre transforming the Eulerian form of Low's action principle produces the Hamiltonian formulation of these equations in the Eulerian description. Since it arises from Euler–Poincaré equations, this Hamiltonian formulation can be written in terms of a Poisson structure that contains the Lie–Poisson bracket on the dual of a semidirect product Lie algebra. Because of degeneracies in the Lagrangian, the Legendre transform is dealt with using the Dirac theory of constraints. Another Maxwell–Vlasov Poisson structure is known, whose ingredients are the Lie–Poisson bracket on the dual of the Lie algebra of symplectomorphisms of phase space and the Born–Infeld brackets for the Maxwell field. We discuss the relationship between these two Hamiltonian formulations. We also discuss the general Kelvin–Noether theorem for Euler–Poincaré equations and its meaning in the plasma context

    The Modulation of Multiple Phases Leading to the Modified KdV Equation

    Get PDF
    This paper seeks to derive the modified KdV (mKdV) equation using a novel approach from systems generated from abstract Lagrangians that possess a two-parameter symmetry group. The method to do uses a modified modulation approach, which results in the mKdV emerging with coefficients related to the conservation laws possessed by the original Lagrangian system. Alongside this, an adaptation of the method of Kuramoto is developed, providing a simpler mechanism to determine the coefficients of the nonlinear term. The theory is illustrated using two examples of physical interest, one in stratified hydrodynamics and another using a coupled Nonlinear Schr\"odinger model, to illustrate how the criterion for the mKdV equation to emerge may be assessed and its coefficients generated.Comment: 35 pages, 5 figure

    Minimizers with discontinuous velocities for the electromagnetic variational method

    Full text link
    The electromagnetic two-body problem has \emph{neutral differential delay} equations of motion that, for generic boundary data, can have solutions with \emph{discontinuous} derivatives. If one wants to use these neutral differential delay equations with \emph{arbitrary} boundary data, solutions with discontinuous derivatives must be expected and allowed. Surprisingly, Wheeler-Feynman electrodynamics has a boundary value variational method for which minimizer trajectories with discontinuous derivatives are also expected, as we show here. The variational method defines continuous trajectories with piecewise defined velocities and accelerations, and electromagnetic fields defined \emph{by} the Euler-Lagrange equations \emph{% on} trajectory points. Here we use the piecewise defined minimizers with the Li{\'{e}}nard-Wierchert formulas to define generalized electromagnetic fields almost everywhere (but on sets of points of zero measure where the advanced/retarded velocities and/or accelerations are discontinuous). Along with this generalization we formulate the \emph{generalized absorber hypothesis} that the far fields vanish asymptotically \emph{almost everywhere%} and show that localized orbits with far fields vanishing almost everywhere \emph{must} have discontinuous velocities on sewing chains of breaking points. We give the general solution for localized orbits with vanishing far fields by solving a (linear) neutral differential delay equation for these far fields. We discuss the physics of orbits with discontinuous derivatives stressing the differences to the variational methods of classical mechanics and the existence of a spinorial four-current associated with the generalized variational electrodynamics.Comment: corrected minor typo: piecewise differentiable on closed instead of open interval

    Multi-shocks in asymmetric simple exclusions processes: Insights from fixed-point analysis of the boundary-layers

    Full text link
    The boundary-induced phase transitions in an asymmetric simple exclusion process with inter-particle repulsion and bulk non-conservation are analyzed through the fixed points of the boundary layers. This system is known to have phases in which particle density profiles have different kinds of shocks. We show how this boundary-layer fixed-point method allows us to gain physical insights on the nature of the phases and also to obtain several quantitative results on the density profiles especially on the nature of the boundary-layers and shocks.Comment: 12 pages, 8 figure

    Wiggles in the cosmic microwave background radiation: echoes from non-singular cyclic-inflation

    Get PDF
    In this paper we consider a unique model of inflation where the universe undergoes rapid asymmetric oscillations, each cycle lasting millions of Planck time. Over many-many cycles the space-time expands to mimic the standard inflationary scenario. Moreover, these rapid oscillations leave a distinctive periodic signature in ln(k) in the primordial power spectrum, where k denotes the comoving scale. The best fit parameters of the cyclic-inflation model provides a very good fit to the 7-year WMAP data.Comment: Computational details and a figure adde

    Landscape Predictions for the Higgs Boson and Top Quark Masses

    Full text link
    If the Standard Model is valid up to scales near the Planck mass, and if the cosmological constant and Higgs mass parameters scan on a landscape of vacua, it is well known that the observed orders of magnitude of these quantities can be understood from environmental selection for large-scale structure and atoms. If in addition the Higgs quartic coupling scans, with a probability distribution peaked at low values, environmental selection for a phase having a scale of electroweak symmetry breaking much less than the Planck scale leads to a most probable Higgs mass of 106 GeV. While fluctuations below this are negligible, the upward fluctuation is 25/p GeV, where p measures the strength of the peaking of the a priori distribution of the quartic coupling. If the top Yukawa coupling also scans, the most probable top quark mass is predicted to lie in the range (174--178) GeV, providing the standard model is valid to at least 10^{17} GeV. The downward fluctuation is 35 GeV/ \sqrt{p}, suggesting that p is sufficiently large to give a very precise Higgs mass prediction. While a high reheat temperature after inflation could raise the most probable value of the Higgs mass to 118 GeV, maintaining the successful top prediction suggests that reheating is limited to about 10^8 GeV, and that the most probable value of the Higgs mass remains at 106 GeV. If all Yukawa couplings scan, then the e,u,d and t masses are understood to be outliers having extreme values induced by the pressures of strong environmental selection, while the s, \mu, c, b, \tau Yukawa couplings span only two orders of magnitude, reflecting an a priori distribution peaked around 10^{-3}. Extensions of these ideas allow order of magnitude predictions for neutrino masses, the baryon asymmetry and important parameters of cosmological inflation.Comment: 41 pages; v4: threshold corrrections for top Yukawa are correcte

    Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale

    Get PDF
    We conducted three torsion-balance experiments to test the gravitational inverse-square law at separations between 9.53 mm and 55 micrometers, probing distances less than the dark-energy length scale λd=c/ρd485μ\lambda_{\rm d}=\sqrt[4]{\hbar c/\rho_{\rm d}}\approx 85 \mum. We find with 95% confidence that the inverse-square law holds (α1|\alpha| \leq 1) down to a length scale λ=56μ\lambda = 56 \mum and that an extra dimension must have a size R44μR \leq 44 \mum.Comment: 4 pages, 6 figure

    Influence of Glyphosate Timings on Conversion of Golf Course Rough from Tall Fescue to ‘Sharps Improved II’ Buffalograss

    Get PDF
    All treatments, except the control that received no glyphosate application, resulted in acceptable buffalograss establishment (\u3e90% buffalograss green cover) by 70 days after seeding (DAS). However, any treatment not sprayed prior to seeding date or that received a 7 DAS application lagged behind in establishment for 6 weeks after seeding
    corecore