1,037 research outputs found

    Solution heat treatment, forming and in-die quenching of a commercial sheet magnesium alloy into a complex-shaped component: experimentation and FE analysis

    Get PDF
    Interest in lightweight materials, particularly magnesium alloys, has increased significantly with rising efficiency requirements in the automotive sector. Magnesium is the lightest available structural metal, with a density approximately 35% lower than that of aluminium. The potential is great for magnesium to become a primary material used in future low carbon vehicle structures; however, there are significant obstacles, namely low ductility and formability, particularly at room temperature. The aim of this work is to present the feasibility of using the solution Heat treatment, Forming, and in-die Quenching (HFQ) process to produce complex shapes from a sheet magnesium alloy, and to use the results to verify a simulation of the process developed using commercial FE software. Uniaxial tensile tests were initially conducted to establish the optimum parameters for forming the part. Stamping trials were then carried out using these parameters, and a simulation set up modelling the forming operation. It was shown that the HFQ process could be used to form a successful component from this alloy, and that a good match was achieved between the results of the forming experiments and the simulation.The authors gratefully acknowledge the support from the EPSRC (Grant Ref: EP/I038616/1) for TARF-LCV: Towards Affordable, Closed-Loop Recyclable Future Low Carbon Vehicle Structures

    Multidisciplinary approach to the management of children with female genital mutilation (FGM) or suspected FGM: service description and case series

    Get PDF
    OBJECTIVE: To describe the first dedicated clinic in the UK for children with suspected or confirmed female genital mutilation (FGM) including referral patterns, clinical findings and subsequent management. DESIGN AND SETTING: A prospective study of all children seen in a dedicated multidisciplinary FGM clinic for children over a 1-year period. POPULATION: Patients aged under 18 years referred for clinical assessment or for a second opinion on Digital Versatile Disc (DVD) images. METHODS AND MAIN OUTCOME MEASURES: Data were collected on reasons for referral, demography, genital examination findings including FGM type, and clinical recommendations. RESULTS: 38 children were referred of whom 18 (47%) had confirmed FGM; most frequently type 4 (61%). Social care and police referred 78% of cases. According to UK law FGM had been performed illegally in three cases. Anonymous information given to the police led to the referral of six children, none of whom had had FGM. CONCLUSIONS: Mandatory reporting and increased media attention may increase the numbers of referrals of children with suspected FGM. This patient group have complex needs and management in a dedicated multidisciplinary service is essential. Paediatricians and gynaecologists should have the skills to carry out the consultation and detect all types of FGM including type 4 which was the most common type seen in this series. This is the first dedicated FGM service for children in the UK and similar clinics in high-prevalence areas should be established

    A study on the bending of laminated glass under blast loading

    Get PDF
    Background: The bending behaviour of laminated glass plays an important role in determining its overall response to blast loading. It is costly and difficult to characterise the bending behaviour by carrying out full-scale blast tests, therefore an alternative method is required. Objective: The objective of this study is to understand the response of laminated glass under high-rate bending in the laboratory at rates representative of blast loading. Methods: In this paper a novel testing method is presented in which laminated glass strips of 700 mm long by 60 mm wide are tested up to speeds of 10 m/s in the laboratory. The laminated glass is accelerated to speeds comparable to blast loading and then brought to rest at its edges to mimic impulsive blast loading conditions. Different interlayer thickness, impact speeds, and boundary conditions were explored. Additionally, modelling methods were used to study the flexural rigidity of post-cracked laminated glass. Results: From the experiments it was found that the interlayer thickness plays a key role in determining whether the dominant failure mechanism is de-bonding of interlayer from the glass or interlayer tearing. In addition, it was found that by allowing the frame to bend under loading, the laminated glass can carry greater loads without failure. Finally, an iterative method was used to quantify the flexural rigidity of post-cracked laminated glass depending on the speed of travel. This is a novel finding as it is usually assumed that laminated glass behaves like a membrane in the post-cracked phase of the response. Conclusion: In modelling and design of laminated glass structures under blast loading, post-crack flexural rigidity must be taken into account. Additionally, having novel frame designs to add further load bearing capacity to the framing members, plays a key role in reducing the load intensity on the laminated glass structure

    BAC-HAPPY mapping (BAP mapping): a new and efficient protocol for physical mapping

    Get PDF
    Physical and linkage mapping underpin efforts to sequence and characterize the genomes of eukaryotic organisms by providing a skeleton framework for whole genome assembly. Hitherto, linkage and physical “contig” maps were generated independently prior to merging. Here, we develop a new and easy method, BAC HAPPY MAPPING (BAP mapping), that utilizes BAC library pools as a HAPPY mapping panel together with an Mbp-sized DNA panel to integrate the linkage and physical mapping efforts into one pipeline. Using Arabidopsis thaliana as an exemplar, a set of 40 Sequence Tagged Site (STS) markers spanning ~10% of chromosome 4 were simultaneously assembled onto a BAP map compiled using both a series of BAC pools each comprising 0.7x genome coverage and dilute (0.7x genome) samples of sheared genomic DNA. The resultant BAP map overcomes the need for polymorphic loci to separate genetic loci by recombination and allows physical mapping in segments of suppressed recombination that are difficult to analyze using traditional mapping techniques. Even virtual “BAC-HAPPY-mapping” to convert BAC landing data into BAC linkage contigs is possible.Giang T. H. Vu, Paul H. Dear, Peter D. S. Caligari and Mike J. Wilkinso

    Selecting Grassland Species for Saline Environments

    Get PDF
    In Australia, around 5.7 million hectares of agricultural land are currently affected by dryland salinity or at risk from shallow water tables and this figure is expected to increase over the next 50 years (LWRA, 2001). Most improved grassland species cannot tolerate the combined effects of salt and waterlogging and, therefore, the productivity of sown grasslands in salt-affected areas is low. However, there is potential to overcome the lack of suitably adapted fodder species by introducing new, salt and waterlogging-tolerant species and by diversifying the gene pool of proven species. Potential species include exotic, naturalised and native Australian grass, legumes, herb and shrub species that are halophytes and non-halophytes. A collaborative national project in southern Australia commenced in 2004 with the objective of evaluating a range of forage species for saline environments

    Pengaruh Lama Perendaman Terhadap Absorpsi Tetrasiklin Pada Adsorben Limbah Sisik Ikan Gurami (Osphronemus Gouramy)

    Full text link
    Influence of Immersion Length on Tetracycline Absorption on Gourami (Osphronemus Gouramy) Scales as Adsorbent. Gourami (Osphronemus Gouramy) scales are one of the natural sources of collagen. This fish scale\u27s collagen has functional properties, such as bio-degradable (easily decomposed), bio-compatible (compatible with surrounding tissue), and potential as bio-adsorbent. The absorbent properties of collagen are currently used as a transport material in local drug delivery for periodontal disease treatment, which is known as tetracycline chip. However, this chip is made of synthetic collagen so it is not absorbable by the body\u27s system. The price is also expensive. This study\u27s aim is to prove the potency of Gourami scales as a source of collagen in medical treatment, especially as a transport material of tetracycline for periodontal disease treatment. The gourami scale was obtained from seafood restaurant in Jember, Jawa Timur. About 500 mg of gourami scales was immersed into 20 ml tetracycline solution in beaker glass. About 200 ÎŒl solution from the beaker glass was taken with micropipette after 1-hour, 2-hour, 4-hour, 12-hour and 24-hour after immersed. After that, the solution was collected into an eppendorf for each time. The absorbance was measured with spectrophotometer at 450 nm wave length. This procedure was repeated five times. The lowest absorbance occured at 1-hour time (160,6 ÎŒg/ÎŒl). The result from light and inverted microscope examination shows a bond between collagen from gourami scales with tetracycline. Gourami scale has the ability to absorb the highest rate of tetracycline at 1-hour immersed time by forming a bond between collagen and tetracycline

    Considering the impact of situation-specific motivations and constraints in the design of naturally ventilated and hybrid buildings

    Get PDF
    A simple logical model of the interaction between a building and its occupants is presented based on the principle that if free to do so, people will adjust their posture, clothing or available building controls (windows, blinds, doors, fans, and thermostats) with the aim of achieving or restoring comfort and reducing discomfort. These adjustments are related to building design in two ways: first the freedom to adjust depends on the availability and ease-of-use of control options; second the use of controls affects building comfort and energy performance. Hence it is essential that these interactions are considered in the design process. The model captures occupant use of controls in response to thermal stimuli (too warm, too cold etc.) and non-thermal stimuli (e.g. desire for fresh air). The situation-specific motivations and constraints on control use are represented through trigger temperatures at which control actions occur, motivations are included as negative constraints and incorporated into a single constraint value describing the specifics of each situation. The values of constraints are quantified for a range of existing buildings in Europe and Pakistan. The integration of the model within a design flow is proposed and the impact of different levels of constraints demonstrated. It is proposed that to minimise energy use and maximise comfort in naturally ventilated and hybrid buildings the designer should take the following steps: 1. Provide unconstrained low energy adaptive control options where possible, 2. Avoid problems with indoor air quality which provide motivations for excessive ventilation rates, 3. Incorporate situation-specific adaptive behaviour of occupants in design simulations, 4. Analyse the robustness of designs against variations in patterns of use and climate, and 5. Incorporate appropriate comfort standards into the operational building controls (e.g. BEMS)
    • 

    corecore