1,390,389 research outputs found

    General study of superscaling in quasielastic (e,e′)(e,e') and (ν,μ)(\nu,\mu) reactions using the relativistic impulse approximation

    Get PDF
    The phenomenon of superscaling for quasielastic lepton induced reactions at energies of a few GeV is investigated within the framework of the relativistic impulse approximation. A global analysis of quasielastic inclusive electron and charged-current neutrino scattering reactions on nuclei is presented. Scaling and superscaling properties are shown to emerge from both types of processes. The crucial role played by final state interactions is evaluated by using different approaches. The asymmetric shape presented by the experimental scaling function, with a long tail in the region of positive values of the scaling variable, is reproduced when the interaction in the final state between the knockout nucleon and the residual nucleus is described within the relativistic mean field approach. The impact of gauge ambiguities and off-shell effects in the scaling function is also analyzed.Comment: 34 pages, 14 figures, accepted in Phys. Rev. C. Section II has been shortene

    Holddown arm release mechanism used on Saturn vehicles

    Get PDF
    With the development of the Saturn launch vehicle, it became mandatory to develop a system for restraining the vehicle until after all checks and engine thrust buildup were completed. The basic Saturn I holddown arm constrains the vehicle by clamping it between a fixed support and a movable jaw. The jaw is on a link pinned to rotate sufficiently to release the vehicle. There are three links in the jaw (restraining) system arranged so that with a small force provided by a pneumatic separator mechanism, the large loads of the vehicle can be restrained. Design details discussed are the link system, the separator, adjustments, and the energy absorber. The function of preloading is discussed. The secondary release system is described. Finally, the design differences between the Saturn I and the Saturn V arm are described

    NLO Leptoquark Production and Decay: The Narrow-Width Approximation and Beyond

    Get PDF
    We study the leptoquark model of Buchm\"uller, R\"uckl and Wyler, focusing on a particular type of scalar (R2R_2) and vector (U1U_1) leptoquark. The primary aim is to perform the calculations for leptoquark production and decay at next-to-leading order (NLO) to establish the importance of the NLO contributions and, in particular, to determine how effective the narrow-width-approximation (NWA) is at NLO. For both the scalar and vector leptoquarks it is found that the NLO contributions are large, with the larger corrections occurring for the case vector leptoquarks. For the scalar leptoquark it is found that the NWA provides a good approximation for determining the resonant peak, however the NWA is not as effective for the vector leptoquark. For both the scalar and vector leptoquarks there are large contributions away from the resonant peak, which are missing from the NWA results, and these make a significant difference to the total cross-section.Comment: 22 pages, 17 figure

    Influence of Strip-Mining on the Mortality of a Wetland Caddisfly, \u3ci\u3eLimnephilus Indivisus\u3c/i\u3e (Trichoptera: Limnephilidae).

    Get PDF
    A coal mine about 2.2 km upstream from Stillfork Swamp Nature Preserve, Carroll Co., Ohio was suspected of causing a reduction in Limnephilus indivisus caddisflies in the south half of the preserve. Second instar L. indivisus larvae collected from the south half of the preserve and from two control areas were reared in cages at the site of collection and at the other two sites in a replicated experiment. Elevated total dissolved solids in water samples from within rearing enclosures displayed strong correlation (r2 = 0.864) with increased mortality when compared to larvae reared in unaffected areas. This investigation suggests that larvae of L. indivisus are useful in biomonitoring of wetlands impacted by acid-mine drainage, and potentially other perturbations

    Phase transition from quark-meson coupling hyperonic matter to deconfined quark matter

    Get PDF
    We investigate the possibility and consequences of phase transitions from an equation of state (EOS) describing nucleons and hyperons interacting via mean fields of sigma, omega, and rho mesons in the recently improved quark-meson coupling (QMC) model to an EOS describing a Fermi gas of quarks in an MIT bag. The transition to a mixed phase of baryons and deconfined quarks, and subsequently to a pure deconfined quark phase, is described using the method of Glendenning. The overall EOS for the three phases is calculated for various scenarios and used to calculate stellar solutions using the Tolman-Oppenheimer-Volkoff equations. The results are compared with recent experimental data, and the validity of each case is discussed with consequences for determining the species content of the interior of neutron stars.Comment: 12 pages, 14 figures; minor typos correcte

    Origin of ferromagnetism in Cs2_2AgF4_4: importance of Ag - F covalency

    Full text link
    The magnetic nature of Cs2_{2}AgF4_{4}, an isoelectronic and isostructural analogue of La2_2CuO4_4, is analyzed using density functional calculations. The ground state is found to be ferromagnetic and nearly half metallic. We find strong hybridization of Ag-dd and F-pp states. Substantial moments reside on the F atoms, which is unusual for the halides and reflects the chemistry of the Ag(II) ions in this compound. This provides the mechanism for ferromagnetism, which we find to be itinerant in character, a result of a Stoner instability enhanced by Hund's coupling on the F
    • …
    corecore