20 research outputs found

    Influence of training status on high-intensity intermittent performance in response to β-alanine supplementation

    Get PDF
    Recent investigations have suggested that highly trained athletes may be less responsive to the ergogenic effects of β-alanine (BA) supplementation than recreationally active individuals due to their elevated muscle buffering capacity. We investigated whether training status influences the effect of BA on repeated Wingate performance. Forty young males were divided into two groups according to their training status (trained: T, and non-trained: NT cyclists) and were randomly allocated to BA and a dextrose-based placebo (PL) groups, providing four experimental conditions: NTPL, NTBA, TPL, TBA. BA (6.4 g day-1 ) or PL was ingested for 4 weeks, with participants completing four 30-s lower-body Wingate bouts, separated by 3 min, before and after supplementation. Total work done was significantly increased following supplementation in both NTBA (p = 0.03) and TBA (p = 0.002), and it was significantly reduced in NTPL (p = 0.03) with no difference for TPL (p = 0.73). BA supplementation increased mean power output (MPO) in bout 4 for the NTBA group (p = 0.0004) and in bouts 1, 2 and 4 for the TBA group (p ≤ 0.05). No differences were observed in MPO for NTPL and TPL. BA supplementation was effective at improving repeated high-intensity cycling performance in both trained and non-trained individuals, highlighting the efficacy of BA as an ergogenic aid for high-intensity exercise regardless of the training status of the individual

    Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review

    Get PDF
    The leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) has been extensively used as an ergogenic aid; particularly among bodybuilders and strength/power athletes, who use it to promote exercise performance and skeletal muscle hypertrophy. While numerous studies have supported the efficacy of HMB in exercise and clinical conditions, there have been a number of conflicting results. Therefore, the first purpose of this paper will be to provide an in depth and objective analysis of HMB research. Special care is taken to present critical details of each study in an attempt to both examine the effectiveness of HMB as well as explain possible reasons for conflicting results seen in the literature. Within this analysis, moderator variables such as age, training experience, various states of muscle catabolism, and optimal dosages of HMB are discussed. The validity of dependent measurements, clustering of data, and a conflict of interest bias will also be analyzed. A second purpose of this paper is to provide a comprehensive discussion on possible mechanisms, which HMB may operate through. Currently, the most readily discussed mechanism has been attributed to HMB as a precursor to the rate limiting enzyme to cholesterol synthesis HMG-coenzyme A reductase. However, an increase in research has been directed towards possible proteolytic pathways HMB may operate through. Evidence from cachectic cancer studies suggests that HMB may inhibit the ubiquitin-proteasome proteolytic pathway responsible for the specific degradation of intracellular proteins. HMB may also directly stimulate protein synthesis, through an mTOR dependent mechanism. Finally, special care has been taken to provide future research implications

    Beta-alanine supplementation improves isometric, but not isotonic or isokinetic strength endurance in recreationally strength-trained young men

    Get PDF
    Background: β-alanine (BA) supplementation may be ergogenic during high intensity exercise, primarily due to the buffering of hydrogen cations, although the effects of beta-alanine supplementationon strength endurance are equivocal. Aim: To determine the effects of 4 weeks of beta-alanine supplementation on skeletal muscle endurance using a battery of performance tests. Methods: This study employed a parallel group, repeated measures, randomised, double-blinded and placebo controlled design. Twenty recreationally strength-trained healthy males completed tests of isotonic strength endurance (repeated bench and leg press), along with tests of isometric and isokinetic endurance conducted using an isokinetic dynamometer. Tests were performed before and after a 4 week intervention, comprising an intake of 6.4g.day-1 10 of BA (n = 9) or placebo (maltodextrin, n = 11). Results: Time-to-exhaustion during the isometric endurance test improved by ~17% in the BA group (p 0.1) were shown for any of the performance variables in the isokinetic test (peak torque, fatigue index, total work) nor for the total number of repetitions performed in the isotonic endurance tests (leg or bench press). Conclusions: Four weeks of BA supplementation (6.4 g.day-1 15 ) improved isometric, but not isokinetic or isotonic endurance performance

    The effect of two β-alanine dosing strategies on 30-minute rowing performance: a randomized, controlled trial

    Get PDF
    Background: β-alanine (βA) supplementation has been shown to increase intramuscular carnosine content and subsequent high-intensity performance in events lasting <4 minutes, which may be dependent on total, as opposed to daily, dose. The ergogenic effect of βA has also been demonstrated for 2000-m rowing performance prompting interest in whether βA may be beneficial for sustained aerobic exercise. This study therefore investigated the effect of two βA dosing strategies on 30-minute rowing and subsequent sprint performance. Methods: Following University Ethics approval, twenty-seven healthy, male rowers (age: 24±2 years; body-height: 1.81±0.02m; body-mass: 82.3±2.5kg; body-fat: 14.2±1.0%) were randomised in a double-blind manner to 4 weeks of: i) βA (2.4 g·d-1, βA1); ii) matched total βA (4.8g on alternate days, βA2); or iii) cornflour placebo (2.4 g·d-1, PL). Participants completed a laboratory 30-minute rowing time-trial, followed by 3x30s maximal sprint efforts at days 0, 14 and 28 (T1-T3). Total distance (m), average power (W), relative average power (W·kg-1), cardio-respiratory measures and perceived exertion were assessed for each 10-minute split. Blood lactate ([La-]b mmol·L-1) was monitored pre-post time-trial and following maximal sprint efforts. A 3-way repeated measures ANOVA was employed for main analyses, with Bonferonni post-hoc assessment (P≤0.05). Results: Total 30-minute time-trial distance significantly increased from T1-T3 within βA1 only (7397±195m to 7580±171m, P=0.002, ƞp2 = 0.196), including absolute average power (194.8±18.3W to 204.2±15.5W, P=0.04, ƞp2=0.115) and relative average power output (2.28±0.15W·kg-1 to 2.41±0.12W·kg-1, P=0.031, ƞp2= 0.122). These findings were potentially explained by within-group significance for the same variables for the first 10 minute split (P≤0.01), and for distance covered (P=0.01) in the second 10-minute split. However, no condition x time interactions were observed. No significant effects were found for sprint variables (P>0.05) with comparable values at T3 for mean distance (βA1: 163.9±3.8m; βA2: 161.2±3.5m; PL: 162.7±3.6m), average power (βA1: 352.7±14.5W; βA2: 342.2±13.5W; PL: 348.2±13.9W) and lactate (βA1: 10.0±0.9mmol·L-1; βA2: 9.2±1.1mmol·L-1; PL: 8.7±0.9mmol·L-1). Conclusions: Whilst daily βA may confer individual benefits, these results demonstrate limited impact of βA (irrespective of dosing strategy) on 30-minute rowing or subsequent sprint performance. Further investigation of βA dosage > 2.4 g·d-1 and/or chronic intervention periods (>4-8 weeks) may be warranted based on within-group observations

    Metabolisable energy estimates in infants.

    No full text

    Intramyocellular lipid stores increase markedly in athletes after 1.5 days lipid supplementation and are utilized during exercise in proportion to their content

    No full text
    Intramyocellular lipids (IMCL) and muscle glycogen provide local energy during exercise (EX). The objective of this study was to clarify the role of high versus low IMCL levels at equal initial muscle glycogen on fuel selection during EX. After 3 h of depleting exercise, 11 endurance-trained males consumed in a crossover design a high-carbohydrate (7 g kg(-1) day(-1)) low-fat (0.5 g kg(-1) day(-1)) diet (HC) for 2.5 days or the same diet with 3 g kg(-1) day(-1) more fat provided during the last 1.5 days of diet (four meals; HCF). Respiratory exchange, thigh muscle substrate breakdown by magnetic resonance spectroscopy, and plasma FFA oxidation ([1-(13)C]palmitate) were measured during EX (3 h, 50% W (max)). Pre-EX IMCL concentrations were 55% higher after HCF. IMCL utilization during EX in HCF was threefold greater compared with HC (P < 0.001) and was correlated with aerobic power and highly correlated (P < 0.001) with initial content. Glycogen values and decrements during EX were similar. Whole-body fat oxidation (Fat(ox)) was similar overall and plasma FFA oxidation smaller (P < 0.05) during the first EX hour after HCF. Myocellular fuels contributed 8% more to whole-body energy demands after HCF (P < 0.05) due to IMCL breakdown (27% Fat(ox)). After EX, when both IMCL and glycogen concentrations were again similar across trials, a simulated 20-km time-trial showed no difference in performance between diets. In conclusion, IMCL concentrations can be increased during a glycogen loading diet by consuming additional fat for the last 1.5 days. During subsequent exercise, IMCL decrease in proportion to their initial content, partly in exchange for peripheral fatty acids
    corecore